Bagging算法
一、自助采样法
给定包含m个样本的数据集D,我们对它进行采样产生数据集D’:每次随机从D中挑选一个样本,将其拷贝放入D’,然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被采样到;这个过程重复执行m次后,我们就得到了包含m个样本的数据集D’,这就是自助采样的结果。
显然有一部分样本会在D‘中出现多次,而另一部分样本不出现。样本在m次采样中始终不被采到的概率是:
limm→∞(1−1m)m=1e=0.368
即通过自助采样法,初始数据集D中约有36.8%的样本未出现在样本数据集D‘中。于是我们可将D’用作训练集,D\D’用作测试集,这种做法简称“包外估计”
二、算法描述
我们可以采样出T个含有m个训练样本的采样集,然后基于每个采样集训练出一个集学习器,在将这些基学习器进行结合。在对预测输出进行结合时,Bagging通常对分类任务使用简单投票法,对回归任务使用简单平均法。若分类预测时出现两个类收到同样票数的情形,则最简单的做法是随机选择一个。
算法描述
输入:训练集D={ (x1,y1),⋯,(x