42、关于步骤爆炸问题的研究与步骤约简方法

关于步骤爆炸问题的研究与步骤约简方法

在并发系统的建模与分析中,Petri 网是一种强大的工具。然而,随着系统规模的增大,步骤爆炸问题成为了分析的瓶颈。本文将深入探讨步骤爆炸问题,并介绍一种有效的步骤约简方法。

1. 预备知识

在深入研究之前,我们需要了解一些基本概念。假设读者熟悉通常的位置 - 转换网的单转换触发规则以及步骤的并发激活。为了简化,我们不考虑同一转换的多次发生,但我们的方法可以相应地扩展。

我们称在标记 $m$ 中,如果转换 $t$ 或步骤 $s$ 在位置 - 转换网的单转换触发规则下被激活(忽略所有扩展,包括容量),则称其为令牌激活。这意味着有足够的令牌来为从位置到转换的所有正常弧提供令牌。

我们使用“Petri 网”这个术语来表示位置 - 转换网的任何扩展,包括位置 - 转换网本身。

2. 不同类型的 Petri 网扩展

以下是几种不同类型的 Petri 网扩展及其特点:
- 带读弧的网 :读弧用于测试令牌的存在,但不移除它,也不阻止其他转换同时移除或测试它。如图 1 所示,两个转换都被启用。任一转换的发生会在标记 $(1, 0)$ 或 $(0, 1)$ 中禁用两者。因此,标记 $(0, 0)$ 在单转换触发规则下不可达,但可以通过由两个转换组成的步骤到达。

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A([Place]):::process -->
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值