关于步骤爆炸问题的研究与步骤约简方法
在并发系统的建模与分析中,Petri 网是一种强大的工具。然而,随着系统规模的增大,步骤爆炸问题成为了分析的瓶颈。本文将深入探讨步骤爆炸问题,并介绍一种有效的步骤约简方法。
1. 预备知识
在深入研究之前,我们需要了解一些基本概念。假设读者熟悉通常的位置 - 转换网的单转换触发规则以及步骤的并发激活。为了简化,我们不考虑同一转换的多次发生,但我们的方法可以相应地扩展。
我们称在标记 $m$ 中,如果转换 $t$ 或步骤 $s$ 在位置 - 转换网的单转换触发规则下被激活(忽略所有扩展,包括容量),则称其为令牌激活。这意味着有足够的令牌来为从位置到转换的所有正常弧提供令牌。
我们使用“Petri 网”这个术语来表示位置 - 转换网的任何扩展,包括位置 - 转换网本身。
2. 不同类型的 Petri 网扩展
以下是几种不同类型的 Petri 网扩展及其特点:
- 带读弧的网 :读弧用于测试令牌的存在,但不移除它,也不阻止其他转换同时移除或测试它。如图 1 所示,两个转换都被启用。任一转换的发生会在标记 $(1, 0)$ 或 $(0, 1)$ 中禁用两者。因此,标记 $(0, 0)$ 在单转换触发规则下不可达,但可以通过由两个转换组成的步骤到达。
graph LR
classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
A([Place]):::process -->