给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。
class Solution {
public:
int reverse(int x) {
long i=0;
long t =x;
while(t)
{
i = 10*i + (t%10);
t = t/10;
}
if(i< INT_MIN || i> INT_MAX )
return 0;
return i;
}
};
官方解答
思路
我们可以一次构建反转整数的一位数字。在这样做的时候,我们可以预先检查向原整数附加另一位数字是否会导致溢出。
算法
反转整数的方法可以与反转字符串进行类比。
我们想重复“弹出” xx 的最后一位数字,并将它“推入”到 \text{rev}rev 的后面。最后,\text{rev}rev 将与 xx 相反。
要在没有辅助堆栈 / 数组的帮助下 “弹出” 和 “推入” 数字,我们可以使用数学方法。
//pop operation: pop = x % 10; x /= 10; //push operation: temp = rev * 10 + pop; rev = temp;
但是,这种方法很危险,因为当 \text{temp} = \text{rev} \cdot 10 + \text{pop}temp=rev⋅10+pop 时会导致溢出。
幸运的是,事先检查这个语句是否会导致溢出很容易。
为了便于解释,我们假设 \text{rev}rev 是正数。
- 如果 temp = \text{rev} \cdot 10 + \text{pop}temp=rev⋅10+pop 导致溢出,那么一定有 \text{rev} \geq \frac{INTMAX}{10}rev≥10INTMAX。
- 如果 \text{rev} > \frac{INTMAX}{10}rev>10INTMAX,那么 temp = \text{rev} \cdot 10 + \text{pop}temp=rev⋅10+pop 一定会溢出。
- 如果 \text{rev} == \frac{INTMAX}{10}rev==10INTMAX,那么只要 \text{pop} > 7pop>7,temp = \text{rev} \cdot 10 + \text{pop}temp=rev⋅10+pop 就会溢出。
当 \text{rev}rev 为负时可以应用类似的逻辑。
C++
class Solution {
public:
int reverse(int x) {
int rev = 0;
while (x != 0) {
int pop = x % 10;
x /= 10;
if (rev > INT_MAX/10 || (rev == INT_MAX / 10 && pop > 7)) return 0;
if (rev < INT_MIN/10 || (rev == INT_MIN / 10 && pop < -8)) return 0;
rev = rev * 10 + pop;
}
return rev;
}
};
JAVA
class Solution {
public int reverse(int x) {
int rev = 0;
while (x != 0) {
int pop = x % 10;
x /= 10;
if (rev > Integer.MAX_VALUE/10 || (rev == Integer.MAX_VALUE / 10 && pop > 7)) return 0;
if (rev < Integer.MIN_VALUE/10 || (rev == Integer.MIN_VALUE / 10 && pop < -8)) return 0;
rev = rev * 10 + pop;
}
return rev;
}
}