图像视角矫正实战案例--- 含透视变换矩阵(单应矩阵)/findHomography 与 getPerspectiveTransformd的区别

90 篇文章 ¥69.90 ¥99.00
本文探讨了在机器视觉中进行图像视角矫正的必要性,通过实例说明了当标准矩形物体在图像中呈现非标准形状时,需要求解透视变换矩阵。OpenCV提供了findHomography和getPerspectiveTransform两个函数来计算单应矩阵,文章对比了它们的异同,包括计算方法、输入参数和应用场景。还展示了相关代码实战和矫正效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 什么时候需要进行图像视角矫正

举个简单例子,在实际机器视觉场景中,由于安装误差,相机的光轴与被测基准平面之间往往不是严格的垂直关系。想靠机械加工去保证很高的垂直度,往往实现起来较为困难。

由于上述的垂直度误差,那么一个标准矩形的物体在图像中可能是一个梯形,甚至不是梯形(对边皆不平行)。

如下图所示:

 这时候,为了能正常进行后续的图像处理及像素定位,我们需要做就需要视角矫正。需要求出当前拍摄图像与期望图像之间的变换关系(透视变换矩阵(单应矩阵)).

2 findHomography 与 getPerspectiveTransform

 在OpenCV中提供了 findHomography 与 getPerspectiveTransform两个算子去求透视变换矩阵(单应矩阵)。那么,他们之间的异同点是什么?

联系:
    都用于计算单应矩阵,即解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thequitesunshine007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值