Toeplitz矩阵以及矩阵乘法FFT加速

本文介绍了Toeplitz矩阵的概念及其在矩阵乘法中的应用。通过利用其特殊结构,可以使用FFT(快速傅里叶变换)方法来加速计算,将计算量从O(n^3)降低到O(n^2 log n),同时减少了内存需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Toeplitz矩阵以及矩阵乘法FFT加速

1.Toeplitz矩阵

托普利兹矩阵,简称为T型矩阵,它是由Bryc、Dembo、Jiang于2006年提出的。托普利兹矩阵的主对角线上的元素相等,平行于主对角线的线上的元素也相等;矩阵中的各元素关于次对角线对称,即T型矩阵为次对称矩阵。这里我们使用matlab中自带的函数生成一个toeplitz矩阵的例子:

x=[1 2 3 4];
y=[1 5 6 7 8 9];
z=toeplitz(x,y);

我们可以得到一个这样的矩阵结果:

在这里插入图片描述

我们可以看到,其中x中的元素变成了第一列,y中的元素变成了第一行,注意x与y的第一个元素必须相同,我们可以看出toeplitz矩阵并不一定是方阵,而是可以任意长宽。当然也有做对称方阵的简单做法:

xx=[1 2 3 4 5];
zz=toeplitz(xx);

这样得到的方阵就是一个对角对称的toeplitz矩阵:

在这里插入图片描述

2.Toeplitz矩阵的乘法加速

在矩阵乘法中我们经常遇到这样的乘法Ax=b.其中A矩阵为toeplitz矩阵并且数量很大时我们完全可以通过toeplitze矩阵的特性来达到减少计算量的效果。具体如何做到我们如下操作:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值