
大模型0基础开发入门与实践
文章平均质量分 91
以实战为线索,逐步深入大模型开发各个环节,掌握大模型基础知识与常用工具链和开发技巧,打造完整大模型工作流,提升工程化编码能力和思维能力。
THMAIL
985 C9 本硕毕业,9年开发经验,从底层算法架构到前沿大模型开发,从软件开发设计到安全逆向工程,涉猎广、钻研深。大学时期开始独立编写游戏辅助程序赢得人生第一桶金,从此走上程序员之路。先后任职于多家互联网大厂核心技术团队,主导并参与多款亿级用户产品的底层架构搭建与核心功能开发。在国际顶级开发者大赛中,凭借突破性的技术方案与极致的代码实现,多次力压全球顶尖团队摘得桂冠
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Cursor使用指南:完全使用cursor搭建一套个人健康数据记录系统(全程纯AI,0代码)
本文介绍了如何使用AI工具Cursor从零开始搭建一个个人健康数据记录App。整个过程无需编写代码,用户只需通过自然语言指令指导AI完成开发。教程分为四个部分:准备环境(安装Cursor、Node.js和HBuilderX)、创建uni-app项目框架、与AI对话设计App结构,以及逐步实现具体功能模块。重点展示了如何通过AI指令生成首页的"今日健康概览"卡片,包括布局、样式和内容填充。该教程为没有编程基础的用户提供了一种全新的App开发方式,只需描述需求,AI即可自动生成完整代码,大幅原创 2025-08-27 08:40:07 · 807 阅读 · 0 评论 -
大模型应用实战:教你从0到1打造 “AI 作业批改系统”(支持数学公式 + 编程题批改)
本文介绍如何从零开发一个支持数学公式和编程题批改的AI作业批改系统。传统作业批改存在效率低、主观性强、反馈不及时等问题。本教程将指导读者: 使用大模型API调用与微调技术 实现多模态信息处理(文本、图片、代码) 基于Django开发后端服务 培养工程化思维 技术栈包括: 核心框架:Django、PyTorch AI服务:BERT、Mathpix、Judge0等API 开发环境:Python 3.9虚拟环境 教程从环境配置开始,详细说明项目初始化、依赖安装和Django应用创建步骤,为后续开发奠定基础。原创 2025-08-26 09:40:07 · 451 阅读 · 0 评论 -
大模型应用实战:从0到1教你打造“跨境电商运营” 多智能体系统(选品 + 文案 + 投放一体化)
大模型与多智能体系统在跨境电商运营中的应用探索 本文介绍了一个基于大语言模型的多智能体系统架构,旨在实现跨境电商运营的自动化流程。该系统由三个核心智能体组成:选品Agent负责市场数据分析,文案Agent生成营销内容,投放Agent执行广告投放。通过总控中心协调任务流程,并借助共享记忆模块实现经验积累与持续优化。文章从传统运营痛点出发,阐述了AI赋能的解决方案,详细说明了系统架构图和工作原理,并提供了开发环境搭建的具体指导。该方案将复杂的跨境电商运营流程转化为可自动执行的智能系统,有望提升运营效率和决策质量原创 2025-08-26 09:19:12 · 1358 阅读 · 0 评论 -
大模型应用实战:从0到1教你开发 “小说续写 + 风格迁移” 工具(Llama 3+StyleGAN)
文章摘要:大模型应用实战:开发“小说续写+风格迁移”工具 本文介绍了一个基于Llama 3和Stable Diffusion的AI工具开发教程,旨在帮助用户实现小说自动续写和风格化插画生成。项目分为两部分:第一部分阐述工具设计理念和核心流程,包括Llama 3续写小说、提取关键词,以及Stable Diffusion生成风格化插画;第二部分讲解开发环境搭建,强调虚拟环境的重要性及创建步骤。该工具将大语言模型与文生图模型结合,通过Gradio构建用户界面,实现从文字到图文的创作闭环。教程注重实战性,适合AI初原创 2025-08-26 09:10:46 · 980 阅读 · 0 评论 -
大模型应用实战:用 Stable Diffusion+Airtable 搭建电商商品图生成平台
摘要 本文介绍如何利用Stable Diffusion、Airtable和Make搭建自动化电商商品图生成平台。该方案旨在解决电商卖家面临的配图"三重困境":高成本、低效率和创意不足。通过Airtable管理结构化商品信息,Make作为自动化中枢连接系统,调用Stable Diffusion API生成图片。具体步骤包括:在Airtable配置商品信息表单,获取Stability.ai API密钥,以及在Make平台设置自动化工作流。该系统可实现仅需填写商品描述即可一键生成高质量商品场景原创 2025-08-26 08:57:18 · 845 阅读 · 0 评论 -
大模型应用实战:如何解决大模型开发中的上下文窗口与成本难题?
本文介绍了如何利用RAG(检索增强生成)技术解决大模型开发中的两大核心挑战:上下文窗口限制和高昂API成本。文章分为三个部分:首先剖析了上下文窗口的工作原理和API计费机制,指出核心矛盾在于扩展上下文与降低成本的冲突;其次详细指导搭建Python开发环境,安装openai、langchain等必备库;最后重点讲解RAG技术原理,通过建立外部知识库实现"检索-增强-生成"的流程,既能突破上下文限制,又能显著降低token消耗。文中提供了完整的代码实现框架和环境配置步骤,帮助开发者快速构建一原创 2025-08-26 08:51:54 · 784 阅读 · 0 评论 -
Transformer 中的位置编码与注意力矩阵运算推导:从零开始的深度解析
摘要:本文深入解析Transformer模型中的位置编码与自注意力机制,从底层原理出发,通过数学推导与代码实现,帮助读者构建系统理解。首先探讨位置编码的必要性,解释词袋模型无法处理顺序信息的局限性,并提出Transformer的解决方案——通过正弦和余弦函数生成位置编码向量。文章详细解析了位置编码公式的设计原理,并附有Python代码实现和可视化展示,为读者提供从理论到实践的完整学习路径。原创 2025-08-26 08:37:06 · 1187 阅读 · 0 评论 -
大模型应用实战:从0到1教你基于 Prompt Tuning,定制 “法律文书生成模型”
摘要:本文介绍如何基于Prompt Tuning技术构建定制化的法律文书生成模型。文章首先分析了直接使用通用大模型的局限性,提出通过Prompt Tuning微调技术来打造专业法律文书生成工具。内容涵盖场景规划、提示词优化策略比较(零样本vs少样本)、Prompt Tuning原理详解,并提供完整的实战指南,包括环境搭建、数据集准备和模型训练流程。该方案可高效生成劳动合同补充协议和民事起诉状等结构化法律文书,相比传统全量微调具有成本低、效果好的优势,为特定领域的大模型应用提供了实用技术路径。原创 2025-08-26 08:26:17 · 902 阅读 · 0 评论 -
大模型应用实战:从0到1教你构建大模型服务高可用架构设计(支持 100万用户并发)
文章摘要 本文介绍了如何构建一个支持百万用户并发的大模型服务高可用架构。针对单个大模型应用面临的性能瓶颈、单点故障和扩展性问题,作者提出了一套分工明确的多层架构方案,包括负载均衡层(Nginx)、推理服务层(vLLM集群)、缓存层(Redis)和监控层(Prometheus+Grafana)。文章详细讲解了架构设计原理,并提供了从环境准备到核心组件部署的实战指南,重点介绍了使用vLLM作为高性能推理引擎的优势及部署方法。通过Docker容器化技术和水平扩展策略,可有效解决大模型服务的高并发挑战,实现稳定可靠原创 2025-08-26 08:19:47 · 614 阅读 · 0 评论 -
大模型应用实战:从0到1教你打造属于自己的“学术论文助手” Agent(自动检索 + 精读 + 总结)
本文介绍了如何从零开始构建一个基于大语言模型的“学术论文助手”Agent,帮助用户自动检索、阅读和总结学术论文。教程分为环境准备、核心工具实现和Agent构建三个部分:首先搭建Python开发环境并安装必要依赖库;然后实现文献检索(PubMed/arXiv)、PDF解析等核心工具;最后通过LangChain框架整合功能,构建能自动完成“检索-精读-总结”全流程的智能助手。文章强调模块化设计,提供详细代码示例,适合科研人员、学生和开发者学习AI应用开发。原创 2025-08-26 08:12:18 · 931 阅读 · 0 评论 -
大模型应用实战:从0到1教你构建多模态 RAG(图文 + 表格混合检索)系统
让我们先抛开复杂的术语,聚焦于一个真实的、触手可及的场景。“本款咖啡机采用最新的 Aroma+ 技术…”故障代码故障描述解决方案E21水箱缺水请为水箱加水E22传感器通讯故障检查传感器连接线,参考图 3-1一张名为的图片,清晰地展示了传感器的位置(即图 3-1)。传统 RAG 系统的窘境如果我们用传统的 RAG 方法来处理这份手册,系统会将所有文本内容(包括表格里的文字)切碎、向量化后存入数据库。当用户提问:“显示 E22 错误怎么办?原创 2025-08-26 08:04:22 · 719 阅读 · 0 评论 -
大模型应用实战:从0到1教你在树莓派 4B 上部署 7B 参数模型(Llama 3 7B-Chat)
摘要:在树莓派4B上部署Llama 3 7B大模型的实战指南 本教程详细介绍了如何在4GB内存的树莓派4B上部署70亿参数的Llama 3 7B-Chat大语言模型。通过量化技术(4位GGUF格式)将模型压缩至约4.6GB,并选用专为CPU优化的llama.cpp推理框架,成功突破硬件限制。教程涵盖硬件准备(散热方案、高速存储)、64位系统配置、模型下载与量化选择,以及llama.cpp的编译优化全过程。这一方案不仅实现本地化AI助手的数据隐私保护和无网络依赖,更通过资源受限环境的实战,深入理解边缘计算中的原创 2025-08-26 08:03:28 · 549 阅读 · 0 评论 -
大模型应用实战:构建企业知识库 RAG 系统(含权限控制 + 多轮对话)
摘要 本文介绍了如何从零开始构建一个企业级知识库RAG系统,实现多格式文档处理、语义检索、权限控制和多轮对话。文章强调实战导向,使用主流技术栈(Python、LangChain、Milvus、Streamlit)搭建可部署的系统。RAG技术通过外部知识库增强大语言模型,解决知识更新、信息幻觉和数据隐私问题。项目提供完整的Docker部署方案,适合开发者快速构建生产级应用,同时可作为简历亮点展示AI实战能力。原创 2025-08-25 17:03:24 · 768 阅读 · 0 评论 -
从0到1教你构造基于 LangChain 构建企业级智能客服系统
企业级智能客服系统开发指南 本文介绍了如何构建基于RAG技术的企业级智能客服系统。首先需搭建Python开发环境并创建虚拟环境,安装核心依赖库(LangChain、OpenAI等)。RAG技术通过检索-增强-生成三阶段工作:将知识文档分割处理存入向量数据库;用户提问时检索相关文本,结合大语言模型生成精准回答。实战部分提供了创建向量数据库的Python代码示例,包括文档加载、文本分割和向量化存储等关键步骤。该系统能有效解决大语言模型对企业内部知识不熟悉的问题,实现智能高效的客户服务。原创 2025-08-25 11:32:18 · 935 阅读 · 0 评论 -
大模型面试必备:200道大模型必背真题解析(基础理论 + 工程实践篇)
大模型面试核心要点摘要 本文系统梳理了200道大模型领域高频面试题,涵盖基础理论与工程实践两大维度。基础理论篇重点解析Transformer架构(自注意力机制、位置编码、多头注意力等核心组件)、主流模型区别(BERT/GPT/T5架构差异)、优化技术(稀疏注意力、GQA/MQA等)及分词方法(BPE/WordPiece原理)。工程实践篇则聚焦大模型训练技巧、推理优化等实际问题。这份指南适用于算法工程师、AI研究员等希望深入大模型技术细节的求职者,通过典型问题解析帮助快速掌握核心知识体系,提升面试准备效率。原创 2025-08-25 11:05:38 · 513 阅读 · 0 评论 -
一文教你如何构建自己的MCP服务
MCP服务构建指南 MCP(Model Control Protocol)是一种面向大模型应用的架构设计模式,通过标准化通信协议协调控制器(Controller)和工作单元(Worker)的协作。核心优势包括模块化解耦、可扩展性和清晰的工作流管理。 核心组件 Controller:负责任务编排和状态管理 Worker:执行具体任务(如LLM调用、工具使用) Message:结构化JSON消息,用于组件间通信 实现要点 消息格式标准化:定义包含task_id、action、payload等字段的JSON结构原创 2025-08-25 10:42:33 · 751 阅读 · 0 评论 -
深度剖析Spring AI源码(九):构建企业知识库,深入ETL与RAG实现
Spring AI ETL与RAG框架解析摘要 Spring AI的ETL框架为企业知识库构建提供了完整的解决方案。该框架包含三大核心模块: 数据提取层:支持PDF、Word、网页等多种格式的文档读取器,采用Apache Tika等技术实现跨格式文本提取,并保留丰富的元数据信息。 ETL处理管道:包括文档转换器、文本分割器和文档写入器,将原始文本数据转化为适合AI处理的格式,其中PDF读取器实现了按页处理、元数据提取和自定义过滤等功能。 RAG应用层:将处理后的文本向量化存储,通过检索增强生成技术实现智能问原创 2025-08-24 15:26:04 · 830 阅读 · 0 评论 -
深度剖析Spring AI源码(十):实战案例:智能客服系统
本文通过一个企业级智能客服系统案例,展示了Spring AI的实践应用。系统架构包含前端、服务、AI和数据四层,支持多轮对话、知识检索、工具调用等功能。核心实现采用ChatClient构建对话服务,集成安全防护、用户上下文、RAG知识检索等模块,通过参数配置确保稳定响应。案例演示了如何将Spring AI理论与企业级应用需求相结合,实现生产环境落地的完整解决方案。原创 2025-08-24 15:26:46 · 1013 阅读 · 0 评论 -
深度剖析Spring AI源码(八):洞察AI应用,Observability与全方位监控体系
Spring AI可观测性体系摘要 Spring AI的可观测性体系为AI应用提供全面的监控能力,主要解决传统Web监控无法覆盖的AI特有指标: 核心架构: 三层观测体系:应用层(ChatClient/VectorStore)→ 观测层(Observation)→ 指标层(Micrometer) 支持多后端:Prometheus/Grafana/Zipkin等 关键特性: ChatModel观测:记录Token用量、响应时间、错误率等核心指标 流式调用监控:支持实时追踪流式API的响应状态 上下文感知:通过原创 2025-08-24 15:25:30 · 663 阅读 · 0 评论 -
深度剖析Spring AI源码(七):化繁为简,Spring Boot自动配置的实现之秘
Spring AI通过Spring Boot自动配置实现了AI开发的极简体验。其核心机制包括: 模块化自动配置:为OpenAI、Anthropic等AI服务提供专属配置类,通过@AutoConfiguration和条件注解实现按需加载 智能Bean装配:自动创建API客户端、模型实例等核心组件,支持自定义覆盖 属性驱动配置:通过application.yml集中管理所有参数,如API密钥、模型参数等 依赖自动关联:自动处理组件间的依赖关系(如EmbeddingModel与VectorStore) 典型配置流原创 2025-08-24 15:24:59 · 587 阅读 · 0 评论 -
深度剖析Spring AI源码(六):切面增强,Advisor API与AOP的融合之道
Aspect-Oriented Programming is like having a Swiss Army knife for cross-cutting concerns.” —— 一位AOP的布道者在Spring AI的世界里,Advisor就是这把功能强大的“瑞士军刀”。它借鉴了Spring AOP的核心思想,让我们能够以一种非侵入的方式,优雅地处理日志记录、安全检查、重试机制、缓存等横切关注点,而无需在每个AI调用中重复编写这些“样板代码”。原创 2025-08-24 15:24:26 · 954 阅读 · 0 评论 -
深度剖析Spring AI源码(五):赋予AI行动力,工具调用(Function Calling)机制
摘要:Spring AI工具调用机制深度解析 Spring AI的Function Calling机制通过ToolCallback接口赋予AI与外部系统交互的能力,实现了从静态知识库到动态执行者的转变。核心组件包括: ToolCallback接口:定义了工具执行契约,包含工具调用、上下文传递和元数据获取方法 FunctionToolCallback实现:采用泛型和函数式编程,支持将Java函数(Function/Consumer/Supplier)封装为AI可调用的工具 设计亮点: 类型安全保证 灵活的静态原创 2025-08-24 15:23:45 · 645 阅读 · 0 评论 -
深度剖析Spring AI源码(四):RAG的基石,解密VectorStore的统一抽象
摘要: Spring AI的VectorStore抽象层是RAG(检索增强生成)应用的核心组件,负责高效存储和管理向量化数据。其接口体系通过多重继承和职责分离设计,支持文档的增删改查操作,并提供了灵活的检索方式。VectorStore主接口继承DocumentWriter和VectorStoreRetriever,实现读写分离,同时支持ID删除和条件删除,并预留了原生客户端访问的扩展能力。VectorStoreRetriever作为只读接口,封装了相似性搜索功能,简化了检索流程。该设计使向量数据管理变得简单原创 2025-08-24 15:23:14 · 926 阅读 · 0 评论 -
深度剖析Spring AI源码(三):ChatClient详解,优雅的流式API设计
Spring AI ChatClient解析:流式API设计精要 Spring AI的ChatClient通过优雅的流式API设计,将复杂的AI调用简化为直观的链式调用。核心亮点: 分层接口设计: ChatClient作为入口,提供多种工厂方法 ChatClientRequestSpec负责构建请求 CallResponseSpec/StreamResponseSpec处理响应 流式编程范式: 支持链式调用,如chatClient.prompt().system("你是助手").user原创 2025-08-24 15:22:39 · 691 阅读 · 0 评论 -
深度剖析Spring AI源码(二):Model抽象层 - “驯服”天下AI的“紧箍咒”
摘要: Spring AI通过Model抽象层实现Java与多样化AI模型的无缝对接,其核心设计遵循面向接口编程原则。关键接口包括基础Model、对话导向的ChatModel/StreamingChatModel(支持流式响应)以及处理向量化的EmbeddingModel。结构化请求(如多角色Prompt)与响应(含元数据的ChatResponse)规范了数据交互,而ChatClient通过建造者模式提供开箱即用的高级API。这套设计隔离了底层模型差异,使业务代码具备跨模型迁移能力,同时通过响应式编程实现实原创 2025-08-24 15:22:07 · 958 阅读 · 0 评论 -
深度剖析Spring AI源码(一):蓝图初探,项目结构与设计哲学
本文深入解析了Spring AI的核心架构设计,针对Java生态如何优雅接入AI能力进行了深度剖析。文章首先阐述了Spring AI诞生的必要性——在企业级应用仍以Java为主流的背景下,为开发者提供无缝集成AI能力的解决方案。 项目采用高度模块化设计,分为核心模型抽象层、ChatClient流式API、向量存储抽象和RAG实现等模块,严格遵循"高内聚低耦合"原则。架构亮点包括:1)通过统一Model接口实现模型无关调用;2)利用Flux原生支持响应式流处理;3)VectorStore接原创 2025-08-24 15:21:33 · 904 阅读 · 0 评论 -
大模型0基础开发入门与实践:第11章 进阶:LangChain与外部工具调用
本章探索了如何打破大模型自身知识的局限,通过LangChain框架赋予其调用外部世界工具的能力。内容讲解了LangChain的核心组件,如模型、提示模板、链和代理(Agent)。通过实战案例,演示了如何让LLM接入搜索引擎、计算器、数据库等外部API,实现从“语言模型”到“行动模型”的进化。原创 2025-08-21 09:04:14 · 263 阅读 · 0 评论 -
大模型0基础开发入门与实践:第4章 “脑细胞”的模拟:神经网络与深度学习入门
本章深入深度学习的核心,从模仿生物神经元开始,解构了人工神经网络的基本单元——感知器。详细阐述了网络如何通过层次化结构实现特征的逐层提取,并直观解释了前向传播(预测)与反向传播(学习)的内在机制。最后,使用PyTorch框架实战MNIST手写数字识别,初步体验了“迷你大脑”的威力。原创 2025-08-21 09:01:00 · 175 阅读 · 0 评论 -
大模型0基础开发入门与实践:第14章 展望:AIAgent与未来发展方向
本章立足当下,展望未来,探讨了以AI Agent为代表的新发展趋势。内容阐述了Agent如何基于LLM的推理能力,通过“思考-行动”循环(如ReAct框架)自主规划并执行复杂任务。同时,也展望了多模态融合、世界模型、端侧模型等前沿方向,为读者描绘了通往通用人工智能的可能路径。原创 2025-08-21 09:05:38 · 879 阅读 · 0 评论 -
大模型0基础开发入门与实践:第13章 内窥:大模型的可解释性与局限性
本章引导读者理性看待大模型,深入探讨其内部机制与固有缺陷。内容介绍了注意力可视化等可解释性技术,帮助理解模型的决策过程。同时,系统性地剖析了幻觉、偏见、知识过时等大模型的“七宗罪”,并讨论了事实核查、数据筛选等缓解策略,强调了负责任AI的重要性。原创 2025-08-21 09:05:06 · 781 阅读 · 0 评论 -
大模型0基础开发入门与实践:第12章 创造:Fine-tuning完全指南
本章提供了在自有数据上“定制”大模型的完整指南。内容区分了全量微调与参数高效微调(PEFT)的场景与优劣,并重点讲解了LoRA等PEFT技术的原理。通过实战项目,展示了从数据准备、模型训练到效果评估的全过程,让读者掌握赋予模型特定领域知识或风格的核心技能。原创 2025-08-21 09:04:40 · 795 阅读 · 0 评论 -
大模型0基础开发入门与实践:第10章 实战:搭建你的第一个对话机器人
本章是理论到应用的桥梁,手把手指导读者构建一个对话机器人。内容涵盖如何利用Hugging Face生态系统快速调用预训练模型,设计有效的提示工程(Prompt Engineering)策略以引导模型输出,以及如何为机器人增加上下文记忆能力,最终实现一个能进行多轮流畅对话的智能应用。原创 2025-08-21 09:03:51 · 967 阅读 · 0 评论 -
大模型0基础开发入门与实践:第9章 “对齐”的艺术:指令微调与人类反馈强化学习
本章聚焦于让大模型“听懂人话”并对齐人类价值观的关键技术。首先介绍了指令微调(SFT)如何教会模型理解并遵循指令。接着,深入剖析了人类反馈强化学习(RLHF)的“三步走”流程:训练奖励模型、使用PPO算法优化语言模型,最终使模型的输出更符合人类偏好,变得更有用、更无害。原创 2025-08-21 09:03:16 · 651 阅读 · 0 评论 -
大模型0基础开发入门与实践:第8章 “大力出奇迹”的哲学:大语言模型的核心技术揭秘
本章深入剖析了大语言模型(LLM)成功的秘诀。内容解释了模型规模(参数、数据、算力)如何通过“缩放法则”实现性能的涌现。详细介绍了支撑万亿参数模型训练的分布式并行技术(数据、张量、流水线),以及在有限资源下进行高效推理的量化、蒸馏等关键技术,揭示了“大”背后的工程智慧。原创 2025-08-21 09:02:54 · 476 阅读 · 0 评论 -
大模型0基础开发入门与实践:第7章 “预训练”的革命:从BERT到GPT的模式变ioen
本章探讨了“预训练-微调”这一现代NLP新范式。内容追溯了从Word2Vec的静态词嵌入,到ELMo和GPT-1的动态嵌入演进。重点对比了以BERT为代表的“双向”自编码模型和以GPT为代表的“单向”自回归模型的架构差异与适用场景,揭示了两种技术路线如何共同推动了自然语言理解与生成的革命。原创 2025-08-21 09:02:27 · 810 阅读 · 0 评论 -
大模型0基础开发入门与实践:第6章 伟大的“巴别塔”:Transformer架构彻底详解
本章聚焦于彻底改变AI领域的Transformer架构。从其核心“自注意力机制”入手,解释了模型如何并行处理序列并动态计算词与词之间的关联权重。详细解构了编码器-解码器结构,包括多头注意力、位置编码、残差连接等关键组件。最后阐明了其成为现代大语言模型基石的革命性意义。原创 2025-08-21 09:02:02 · 603 阅读 · 0 评论 -
大模型0基础开发入门与实践:第5章 “听”和“看”的智慧:自然语言处理与计算机视觉基础
本章为AI装上了专业的“眼睛”和“耳朵”。重点讲解了专为图像理解设计的卷积神经网络(CNN),剖析了其卷积与池化两大核心组件。同时,介绍了为处理序列数据而生的循环神经网络(RNN)及其“记忆”机制。最后通过CNN实战升级数字识别器,印证了优秀架构设计的巨大优势。原创 2025-08-21 09:01:34 · 916 阅读 · 0 评论 -
大模型0基础开发入门与实践:第3章 机器的“统计学”:机器学习基础概念扫盲
本章揭示了机器“学习”的本质,阐述了模型如何从数据中自动寻找规律。系统介绍了监督学习、无监督学习和强化学习三大范式,并给出了一个完整的机器学习项目“七步走”流程。最后,通过Scikit-learn实战鸢尾花分类,带领读者构建了第一个预测模型,完成了从理论到实践的跨越。原创 2025-08-21 09:00:38 · 851 阅读 · 0 评论 -
大模型0基础开发入门与实践:第2章 必备的“扳手”:Python编程与科学计算基础入门
本章是AI开发的“工具准备”篇。系统介绍了为何Python是AI领域的首选语言,并指导读者从零开始搭建基于Anaconda和Jupyter Notebook的开发环境。核心内容是Python基础语法教学,以及三大科学计算神器——NumPy、Pandas和Matplotlib的入门实战。学完本章,读者将具备用代码处理真实数据的基本能力,从理论学习者转变为动手实践者。原创 2025-08-21 08:59:54 · 780 阅读 · 0 评论 -
大模型0基础开发入门与实践:第1章 从何处而来:人工智能简史与核心概念
本章追溯人工智能的源头,从图灵测试的构想,到“人工智能”学科在达特茅斯会议的正式诞生。通过区分符号主义、机器学习与深度学习三个时代,清晰地界定了AI、ML和DL三者之间的层级关系(AI ⊃ ML ⊃ DL)。本章旨在为读者构建AI发展的历史观,厘清核心概念,为后续深入学习大模型打下坚实的认知基础。原创 2025-08-21 08:59:23 · 673 阅读 · 0 评论