机器学习笔记(9)--集成学习

一.bagging

bagging的基本步骤为:

a.用bootstrap抽样方法获得n个子训练集

b.用每个子训练集独立训练一个基学习器(通常是决策树或神经网络)

c.将测试样本放入每个基学习器中获得预测结果

d.对预测结果进行多数投票

随机森林就是一个有随机选择特征的基学习器都是决策树的bagging分类器

bagging的特点是可以降低方差,来避免过拟合

二.boosting

1.基本boosting

boosting的基本步骤:

a.从训练集中以无放回抽样方式随机抽取一个训练子集,用于弱学习机C1的训练

b.从训练集中以无放回抽样方式随机抽取第2个训练子集,并将C1中误分类样本的50% 加入到训练集中,训练得到弱学习机C2

c.从训练集中抽取C1和C2分类结果不一致的样本生成训练样本集d3,以此训练第3个弱学习机C3

d.通过多数投票组合三个弱学习机C1、C2和C3

boosting的特点是擅长降低偏差,但对异常值很敏感

2.Adaboost

Adaboost的基本步骤:

a.对训练集赋予相同的权重w,其中\sum w_{i}=1

b.用加权的训练集训练一个弱学习机

c.预测测试集样本类标{y}'

d.计算权重错误率\varepsilon = w\cdot ({y}' == y)

e.计算相关系数\alpha_{j}=0.5log(1-\varepsilon /\varepsilon )

f.更新权重w=w\times exp(\alpha_{j}\times {y}' \times y )

g.归一化权重,使权重和为1

h.重复b~g步多次,用每轮获得的弱学习机对样本进行预测,并进行多数投票

更新权重简单说,就是将预测错的样本增加权重,将预测错的减小权重,使得下次预测时,对这些难预测的样本正确划分的几率变高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值