threejs5artist
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
75、基于高斯过程的样本高效强化学习
本文介绍了一种基于高斯过程(GP)的样本高效强化学习方法,通过结合高斯过程模型学习和基于网格的值迭代规划,实现了类似于RMAX的在线学习算法。该方法利用高斯过程预测状态转移及其不确定性,并在规划过程中引入乐观探索机制,以提高学习效率。实验表明,该算法在多个基准任务中表现出快速的学习速度和接近最优的行为,同时讨论了其优势与局限,如对低维问题的有效性及维度诅咒的限制。原创 2025-07-16 06:47:23 · 23 阅读 · 0 评论 -
74、基于高斯过程的高效样本强化学习
本文提出了一种基于高斯过程的高效样本强化学习算法GP-RMAX,适用于连续状态空间和平滑过渡动态的在线强化学习任务。该算法通过将模型学习和规划步骤分离,利用高斯过程(GP)的强大建模能力和不确定性估计,在减少样本复杂度的同时实现高效学习和决策。实验表明,GP-RMAX在多个基准领域中具有显著的样本效率优势,显示出实际应用潜力。原创 2025-07-15 16:48:31 · 20 阅读 · 0 评论 -
73、基于时间最大间隔马尔可夫网络的时空关联环境建模
本文提出了一种基于时间最大间隔马尔可夫网络(TM3N)的时空关联环境建模方法,通过引入时间相关性组件,综合考虑空间依赖和时间动态,提升了对复杂系统建模的准确性。TM3N模型结合了最大间隔准则与结构化预测框架,能够有效处理如建筑物内人员占用估计等实际问题,并在模拟和真实数据中展现出优于传统HMM、M3N和CRF模型的性能。此外,该模型还具有良好的适应性和扩展性,可应用于交通流量预测、气象预报等多个领域。原创 2025-07-14 13:16:26 · 26 阅读 · 0 评论 -
72、图正则化转导分类与时间最大间隔马尔可夫网络
本文介绍了两种新型的机器学习模型:图正则化转导分类方法GNetMine和时间最大间隔马尔可夫网络(TM3N)。GNetMine针对异构信息网络中的分类问题,通过构建基于图的正则化框架,利用多类型链接信息实现对对象的高效分类。实验表明,该方法在DBLP数据集提取的异构网络上优于LLGC、wvRN和nLB等现有算法。TM3N则是一种结合空间依赖和时间相关性的新模型,通过循环信念传播(LBP)进行参数估计,并使用线性整数规划(LIP)预测隐藏状态。该模型在模拟数据集和实际建筑占用估计任务中均表现出卓越的性能,优于原创 2025-07-13 10:54:16 · 18 阅读 · 0 评论 -
71、图正则直推式分类在异构信息网络中的应用
本文针对传统基于图的学习方法在处理异构信息网络时的局限性,提出了一种扩展的基于图的学习框架。通过定义异构信息网络和直推式分类问题,构建基于一致性假设的目标函数,并推导出闭式解和迭代解。实验结果表明,该算法能够有效利用多类型链接和对象的语义信息,在分类任务中表现出较高的准确性和良好的鲁棒性。原创 2025-07-12 09:44:40 · 14 阅读 · 0 评论 -
70、眼动探索与异构信息网络的图正则化转导分类
本文探讨了两个重要的信息处理研究方向:基于眼动的图像检索和异构信息网络的图正则化转导分类。在图像检索领域,提出了一种结合眼动信息和图像特征的新方法 LinRelMKLTensor,该方法通过核化 LinRel 算法与多核学习(MKL)以及张量核 SVM 提升了搜索结果的准确性。在异构信息网络分类方面,介绍了一种通用框架 GNetMine,它能够有效解决异构网络中因结构复杂、缺乏特征和标签而带来的分类挑战。研究成果为相关领域的发展提供了新的思路,并具有广泛的实际应用潜力。原创 2025-07-11 12:58:11 · 10 阅读 · 0 评论 -
69、基于特征加权与眼动信息的图像检索系统研究
本文研究了一种结合多核学习(MKL)和眼动信息的图像检索系统,通过非均匀特征加权和利用眼动特征来提升内容基于图像检索(CBIR)系统的性能。实验结果表明,引入多核学习和眼动特征的 LinRelMKLTensor 算法在平均精度上表现最佳,有效提升了图像检索的效果。研究还详细探讨了系统的工作流程、算法性能以及未来的发展方向。原创 2025-07-10 16:05:28 · 16 阅读 · 0 评论 -
68、多领域数据分析与基于内容的图像检索技术探索
本文探讨了多领域数据分析和基于内容的图像检索技术的最新进展。在多领域数据分析方面,研究了处理时间未知对齐数据和无配对样本的多视图学习方法,并指出现有ANOVA方法的局限性。对于基于内容的图像检索技术,介绍了LinRelMKL算法及其结合眼动数据的扩展方法,提高了图像检索效率和准确性。文章总结了两种技术的应用流程,并展望了未来的发展方向。原创 2025-07-09 12:00:24 · 16 阅读 · 0 评论 -
67、图形多向模型:解决复杂机器学习问题的新方法
本文介绍了一种解决复杂机器学习问题的新方法——图形多向模型。该模型通过构建统一的框架,将复杂问题概念化为扩展的多向建模任务,涵盖了标准协变量的多向学习、配对样本的多视图学习、未知对齐的时间变量以及无配对样本的多视图学习等不同类型的建模方法。模型利用正则化降维、ANOVA建模、BCCA生成模型以及HMM建模等关键技术,有效处理高维数据、短时间序列和不同域的数据源。尽管模型在计算复杂度和假设条件方面存在一定挑战,但其在生物研究等多个领域具有广泛的应用前景。原创 2025-07-08 10:24:42 · 12 阅读 · 0 评论 -
66、多任务特征选择与多向模型的研究进展
本文综述了多任务特征选择与多向模型的研究进展。通过在阿拉伯数字数据集和前列腺癌微阵列数据集上的实验,比较了BMFS、ℓ1/ℓ2、RMTL等方法在预测性能和特征选择稳定性方面的表现。BMFS在多数任务中表现最佳,并具有显著的统计优势。此外,文章探讨了多向模型的扩展应用,包括多视图学习、时间协变量未知对齐以及无配对样本的多视图分析,为复杂数据建模提供了新的方法。这些技术在生物医学等领域展现出广泛的应用前景。原创 2025-07-07 15:20:33 · 15 阅读 · 0 评论 -
65、基于期望传播的贝叶斯多任务特征选择方法解析
本文提出了一种基于广义尖峰-板条先验分布的贝叶斯多任务特征选择模型,并采用期望传播(EP)算法进行近似推理。该模型通过引入二进制潜在变量γ来识别不同任务间共享的相关特征,从而实现高效的特征选择。由于精确贝叶斯推断不可行,EP算法被用于近似后验分布,结合高效的参数化方法,降低了计算复杂度,使模型在高维特征空间下仍具有良好的效率和稳定性。实验表明,该方法在多任务学习中表现出色,具备较高的分类准确率和特征选择稳定性。原创 2025-07-06 11:26:05 · 17 阅读 · 0 评论 -
64、基因调控网络逆向工程与多任务特征选择方法研究
本博文重点研究了基因调控网络逆向工程中的改进 ARACNE 方法以及多任务特征选择的相关模型。通过引入枢纽基因的先验知识,改进后的 ARACNE 在合成和真实数据上均表现出更优性能,尤其是结合 ARD 特征选择的方法效果最佳。此外,文中提出了一种基于广义尖峰-平板稀疏先验的贝叶斯多任务特征选择模型,并采用期望传播(EP)进行近似推断,有效处理高维特征空间下的多任务问题。实验结果表明,该模型在多个数据集上优于现有方法,具有良好的稳定性和预测性能。最后,文章还总结了不同方法的特点与优势,并探讨了未来可能的研究方原创 2025-07-05 12:58:49 · 704 阅读 · 0 评论 -
63、基因转录调控网络中的枢纽基因选择方法
本文探讨了基因转录调控网络中枢纽基因的选择方法,包括自动相关性确定(ARD)、组Lasso和最大相关性最小冗余性(MRMR)三种线性方法,并评估了它们在合成数据上的性能。实验结果显示,ARD方法在大多数情况下表现最佳,尤其是在大型网络中。此外,文章还研究了如何结合这些枢纽基因选择方法改进ARACNE算法的性能,以提升基因网络重建的准确性和召回率。这些方法为深入理解基因调控机制提供了有力支持。原创 2025-07-04 16:17:18 · 21 阅读 · 0 评论 -
62、双聚类与转录网络重建方法研究
本文综述了生物信息学领域中双聚类和转录网络重建的研究进展。重点介绍了Bagging双聚类方法在基因表达数据分析中的优势,包括其在误差控制、元聚类数量确定以及生物学相关性方面的出色表现。同时探讨了转录网络重建中枢纽基因选择的方法,特别是基于ARD技术的改进ARACNE算法的应用和性能提升。此外,文章展望了未来研究方向,如开发更高效的双聚类算法、整合多组学数据、构建动态转录网络模型等。这些研究成果为基因调控关系的理解及生物医学应用提供了重要的理论支持和技术手段。原创 2025-07-03 15:19:10 · 15 阅读 · 0 评论 -
61、微阵列数据双聚类的Bagging方法
本文介绍了一种基于Bagging的微阵列数据双聚类方法,并通过人工和真实数据实验验证其有效性。该方法利用自助采样生成多个双聚类结果,通过层次聚类和概率分析聚合为最终的双聚类结构,显著提高了准确性并减少了噪声影响,具有重要的生物学相关性。原创 2025-07-02 12:14:30 · 18 阅读 · 0 评论 -
60、强化学习特征选择与双聚类集成方法
本博文探讨了强化学习中的特征选择与双聚类集成方法。在强化学习部分,提出了一种基于前向选择和条件互信息估计的特征选择算法,并通过网格世界导航问题验证了其有效性;在双聚类部分,介绍了基于Bagging的集成方法,通过对多个双聚类模型进行聚合,提高了对复杂基因表达数据的处理能力。两种方法分别在高维状态空间处理和生物信息学领域展现了良好的应用前景。原创 2025-07-01 13:02:42 · 16 阅读 · 0 评论 -
59、强化学习中的特征选择:通过条件互信息评估隐式状态 - 奖励依赖关系
本文提出了一种基于条件互信息的强化学习特征选择方法,旨在解决高维状态空间带来的挑战。通过引入条件互信息评估回报与状态特征之间的依赖关系,并采用最小二乘互信息估计器进行高效计算,该方法能够捕捉隐式的状态-奖励关系。实验结果表明,该方法在网格世界导航问题中优于传统方法,在平均回报、特征选择效率和收敛速度方面均表现出优势。原创 2025-06-30 13:33:23 · 18 阅读 · 0 评论 -
58、基于可分离函数之和的分类算法:原理、性能与展望
本文介绍了基于可分离函数之和的分类算法,探讨了其核心原理、性能表现及未来发展方向。通过交替最小化过程(AMP)和全局最小化过程(GMP)优化损失函数,并与多种经典分类方法进行比较,该算法在多个数据集上展现出较强的竞争力。文章还分析了不同正则化方法和损失函数对算法性能的影响,并提出了可能的扩展方向,为未来研究提供了思路。原创 2025-06-29 15:02:36 · 17 阅读 · 0 评论 -
57、可分离函数求和的分类方法
本文探讨了一种基于可分离函数求和的分类方法,用于解决高维数据中的分类问题。通过引入适合的损失函数(如负对数似然和平滑铰链损失),并结合一维基函数表示以及正则化策略,有效避免了过拟合问题。文中还描述了最小化过程涉及的算法类型,并通过数值实验验证了该方法在多个基准数据集上的有效性与竞争力。这种方法利用了低秩张量分解的优势,能够在保证分类性能的同时缓解维度灾难问题。原创 2025-06-28 11:28:26 · 12 阅读 · 0 评论 -
56、Web本体中概念的归纳方法与实验评估
本文介绍了一种基于术语决策树(TDT)的Web本体中概念归纳方法,结合描述逻辑(DL)理论,通过自上而下的树归纳算法处理开放世界语义下的未标记个体。博文详细阐述了TDT的基础原理、从TDT到概念描述的转换过程、TDT的归纳算法设计以及在多个OWL本体上的实验评估结果。研究表明,该方法在个体分类任务中具有较高的匹配率和稳定性,适用于本体填充、诊断及层次聚类等应用场景。同时,文章也分析了该方法的局限性,并提出了未来改进的方向。原创 2025-06-27 09:50:34 · 15 阅读 · 0 评论 -
55、网络本体中概念归纳:基于术语决策树的方法
本文探讨了基于术语决策树的方法在网络本体中进行概念归纳的应用。通过介绍描述逻辑的基础知识、学习问题的定义以及术语决策树的分类和归纳过程,展示了该方法在处理语义网中的逻辑表示时的优势。实验验证表明,术语决策树方法在分类一致性方面优于其他方法,并具有较低的未标记实例比例。同时,文章展望了该方法在未来与深度学习、知识图谱融合的可能性,以及在处理大规模和异构数据方面的潜力。原创 2025-06-26 15:53:01 · 16 阅读 · 0 评论 -
54、基于数据流调用图挖掘的软件缺陷定位
本文介绍了一种基于数据流调用图(DEC 图)的新型软件缺陷定位方法。该方法结合了数据流分析与调用图结构,通过执行正确和失败程序的数据特征提取、后续感染检测以及结构影响缺陷改进技术,显著提高了缺陷定位的准确性。实验结果表明,该方法在 Weka 机器学习套件中的缺陷定位效率表现优异,平均只需检查少量方法即可定位缺陷。文章还对比了现有缺陷定位技术,并提出了未来工作的扩展方向,如处理全局变量、集成其他方法以及研究真实缺陷场景。原创 2025-06-25 13:45:33 · 10 阅读 · 0 评论 -
53、基于数据流调用图挖掘的软件缺陷定位
本文介绍了基于数据流调用图(DEC 图)的软件缺陷定位方法,重点解决传统技术难以处理的数据流影响型缺陷问题。通过将程序执行跟踪转化为 DEC 图,并结合频繁子图挖掘与熵计算,实现更精确的缺陷定位。文章详细阐述了 DEC 图的构建过程、离散化方法以及缺陷可能性的计算流程,展示了该方法在提升缺陷定位精度和可扩展性方面的优势。原创 2025-06-24 12:54:15 · 13 阅读 · 0 评论 -
52、交互式聚类与软件缺陷定位技术解析
本文详细解析了交互式聚类与软件缺陷定位技术的核心原理和实验结果。在交互式聚类中,通过用户反馈引导聚类过程,提高了准确性和效率,并引入监督模型模拟用户的反馈行为。实验表明,CLIKM 在真实数据集上优于传统无监督聚类和成对约束聚类方法。在软件缺陷定位方面,传统的调用图分析方法存在局限性,无法有效识别数据流相关的缺陷,因此提出了基于数据流启用的调用图(DEC 图)的新方法,结合数据流信息进行缺陷定位,取得了良好效果。文章还探讨了两种技术的优化方向及其结合应用的可能性,为未来的研究提供了新思路。原创 2025-06-23 11:56:43 · 17 阅读 · 0 评论 -
51、交互式聚类的集群级半监督模型
本文介绍了一种用于交互式聚类的集群级半监督模型,通过结合用户的分配反馈和集群描述反馈,在保持低失真误差的同时更好地满足用户需求。文章详细阐述了反馈类型、问题公式化、交互式聚类算法的设计与实现,并进行了实验评估,验证了所提方法的有效性。该模型不仅适用于k-means聚类,还可扩展到其他基于原型的聚类算法。原创 2025-06-22 11:29:29 · 14 阅读 · 0 评论 -
50、大型多模态社交网络与交互式聚类的创新研究
本文探讨了大型多模态社交网络的xSocial模型和交互式集群级半监督聚类模型的创新研究。xSocial模型通过模拟用户行为,更准确地反映了真实社交网络的复杂演化过程;而集群级半监督模型则在高维数据聚类中提供了更自然、有效的解决方案。两者为社交网络分析和数据挖掘领域带来了新的思路,并对未来的优化方向进行了展望。原创 2025-06-21 10:42:50 · 19 阅读 · 0 评论 -
49、大规模多模态社交网络分析
本文探讨了大规模多模态社交网络的分析与建模,基于诺基亚FriendView和Flickr的真实交互数据,提出了特征网络分析方法以揭示局部时间模式,并深入研究了用户共同参与活动与友谊形成之间的相关性。同时,介绍了一个创新的xSocial多模态图生成模型,能够模拟真实社交网络中好友网络与参与网络的协同演化过程,为理解复杂社交行为提供了理论支持和技术框架。原创 2025-06-20 16:27:04 · 14 阅读 · 0 评论 -
48、主动学习与多模态社交网络分析研究
本研究探讨了主动学习与多模态社交网络分析两个领域的新方法和应用。在主动学习方面,提出了基于广义查询和模糊答案的算法(AL-GQA(u) 和 AL-GQA(n)),实验表明其性能优于传统方法,并揭示了模糊答案在加速学习中的有效性。在多模态社交网络分析方面,通过EigenNetwork分析方法发现了人类社交行为的时间模式,揭示了朋友网络与参与网络之间的相关性,并设计了能够模拟真实网络特性的多模态图生成器xSocial 1。这些成果对于改进主动学习策略、理解社交行为规律以及优化社交系统设计具有重要意义。原创 2025-06-19 12:06:08 · 14 阅读 · 0 评论 -
47、向模糊神谕询问广义查询的主动学习算法
本文提出了一种将模糊神谕应用于主动学习中广义查询的新方法,旨在解决传统主动学习对神谕准确答案的严格假设问题。通过设计通用目标函数、采用贪心搜索构建广义查询,并结合多实例学习的组合函数更新模型,有效提高了在未标记数据和有限训练数据下的预测性能。算法在多个实际应用场景中具有广泛适用性,并通过实验验证了其有效性。原创 2025-06-18 12:19:54 · 17 阅读 · 0 评论 -
46、稀疏无监督降维算法与广义查询主动学习
本博文探讨了稀疏无监督降维算法与向模糊神谕提出广义查询的主动学习方法。在稀疏无监督降维算法部分,重点介绍了SPCO算法的独特特性,并与其他稀疏PCA算法在分类问题和基因微阵列数据中的应用进行了比较实验。结果表明,sPCA-OS和SPCO在分类任务中表现更优。在主动学习部分,提出了基于模糊答案的广义查询方法,解决了传统主动学习中具体查询效率低的问题,并通过实验验证其有效性。最后对两种方法的应用前景进行了展望。原创 2025-06-17 09:45:44 · 18 阅读 · 0 评论 -
45、稀疏无监督降维算法详解
本文详细介绍了一种新的稀疏无监督降维方法,包括稀疏主成分分析(sPCA-OS)和稀疏主坐标分析(SPCO)。通过引入稀疏约束,解决了传统PCA难以解释结果的问题。文中从理论推导、算法实现到实验验证全面展示了该方法在pitprops数据集、合成数据集、UCI数据集以及基因微阵列数据集上的优越性能,突出了其在稀疏性、稳健性和解释性方面的优势。原创 2025-06-16 13:54:47 · 15 阅读 · 0 评论 -
44、基于机会约束的链接预测学习算法
本文介绍了基于机会约束的链接预测学习算法,包括成本敏感的二阶锥规划(CS-SOCP)、有偏分类(B-SOCP)和不均匀间隔分类(PAUM)三种框架。通过在多个现实世界数据集上的实验,展示了这些方法在处理大规模数据、噪声标签和缺失特征方面的优势,并对它们的性能进行了比较分析。最后提出了未来研究的方向和建议。原创 2025-06-15 15:48:29 · 16 阅读 · 0 评论 -
43、多视角数据与机会约束下的学习算法研究
本文探讨了多视角数据与机会约束下的学习算法,重点研究了多视角数据中的非线性判别构建方法以及基于机会约束的链接预测学习算法。通过引入MFDA及其衍生方法,研究人员在多个数据集上验证了其灵活性和有效性;同时,在处理链接预测问题时,基于机会约束的方法成功解决了类别不平衡问题,提高了预测准确率。这些方法在网络分析、生物网络、金融等领域具有广泛的应用前景,并为未来的研究提供了优化方向和跨领域应用的可能性。原创 2025-06-14 12:05:30 · 13 阅读 · 0 评论 -
42、从多数据视图构建非线性判别器
本文探讨了如何从多数据视图构建非线性判别器,重点介绍了多视图Fisher判别分析(MFDA)的理论基础、正则化和损失函数的选择、私有方向的引入以及泛化误差界的推导。通过玩具数据实验、VOC 2007图像数据集实验以及神经影像数据集实验验证了MFDA及其变体PMFDA和SMFDA的有效性,并展示了其在不同场景下的分类性能优势。文章还总结了多视图方法的优势,提供了实际应用建议,并指出了未来的研究方向。原创 2025-06-13 10:47:17 · 16 阅读 · 0 评论 -
41、强化学习与多视图数据的分类方法探索
本博客探讨了强化学习中的自适应基方法和多视图数据分类的相关算法。通过在Garnet问题和山地车任务中应用自适应基TD算法,展示了其在性能上的显著优势,并对多时间尺度与单时间尺度算法进行了对比分析。此外,还介绍了凸多视图Fisher判别分析(MFDA)及其概率解释,并通过实验验证了这些方法在不同数据集上的有效性。这些方法为处理复杂的动态环境和多源信息提供了有力的工具。原创 2025-06-12 10:22:50 · 14 阅读 · 0 评论 -
40、自适应基函数强化学习算法解析
本文详细解析了基于自适应基函数的强化学习算法,包括ABTD、ABBE和ABPBE三种主要算法。通过引入参数化的线性-非线性基函数,提高了价值函数逼近的灵活性和适应性。文章利用随机逼近和多时间尺度ODE方法对算法的收敛性进行了理论证明,并在Garnet问题和山车问题上进行了仿真实验,验证了算法的有效性和性能差异。最后总结了算法的优势与挑战,并提出了未来的研究方向。原创 2025-06-11 14:38:07 · 19 阅读 · 0 评论 -
39、船舶轨迹聚类与自适应强化学习基础研究
本博文探讨了船舶轨迹聚类与自适应强化学习的基础研究。在船舶轨迹聚类方面,分析了不同内核和轨迹压缩对聚类性能的影响,发现轨迹压缩不仅减少了计算成本,还提升了聚类效果。同时,在自适应强化学习领域,提出了基于Actor-Critic框架的自适应基函数调整方法,有效解决了大状态空间下的存储与泛化问题,并通过模拟验证了其收敛性和性能优势。未来的研究方向包括扩展到更多应用场景及优化多时间尺度算法。原创 2025-06-10 13:24:04 · 22 阅读 · 0 评论 -
38、船舶轨迹聚类之对齐核方法解析
本文探讨了船舶轨迹聚类中使用对齐核的方法,通过定义不同的对齐方式(最短序列对齐SSA、动态时间规整DTW、编辑距离ED)并构建相应的核函数(基于最大得分的Simmax和基于软最大得分的Simsum),结合核K-均值聚类算法进行实验。研究发现,编辑距离度量的KED_max核在合适的参数设置下表现最佳,能够实现近乎完美的聚类效果。同时,轨迹压缩和时间维度设置对聚类性能也有显著影响,合理选择可以提升聚类效果和计算效率。原创 2025-06-09 16:17:13 · 22 阅读 · 0 评论 -
37、多标签分类损失分析与船舶轨迹聚类研究
本文探讨了多标签分类中的损失函数分析以及船舶轨迹聚类的研究。在多标签分类部分,比较了不同分类器(如BR和LP)在Hamming损失和子集0/1损失上的性能表现,发现损失函数的选择对模型效果有显著影响。在船舶轨迹聚类方面,研究了基于动态时间规整(DTW)、编辑距离(ED)等对齐度量方法,并结合核k-means算法进行聚类,同时分析了轨迹压缩对性能的积极影响。最后,文章展望了将多标签分类与轨迹聚类结合应用于航运管理的潜力。原创 2025-06-08 13:47:00 · 17 阅读 · 0 评论 -
36、多标签分类中性能指标的遗憾分析
本文深入探讨了多标签分类中两种重要性能指标——汉明损失和子集 0/1 损失的风险最小化器结构、边界关系及遗憾分析,并通过实验验证了不同分类器在不同数据集上的表现。文章强调了选择合适损失函数的重要性,并对标签依赖性和分类器设计提供了理论指导与实践启示。原创 2025-06-07 15:38:56 · 15 阅读 · 0 评论