tensorflow教程之tf.matmul(a,b)的用法,一次性植入你的大脑

本文详细解释了TensorFlow中tf.matmul函数的使用方法,通过具体示例展示了矩阵相乘的操作过程,并对比了tf.multiply函数的功能区别,强调了矩阵维度匹配的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.matmul(a,b)是一种矩阵相乘,这个涉及到了线性代数里的知识

举个例子

import tensorflow as tf

a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
d=tf.matmul(a,b)
with tf.Session() as sess:
    print(sess.run(d))

这个怎么计算呢?

 

 我们现在运行一下程序看看,是否与我们说的一样

一样的!

但是我们需要注意

tf.matmul(a,b)与tf.multiply(a,b)的区别,后者是单纯的对应位置数字相乘

 报错的原因是a与b的维度不一样,必须维度一样才行

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值