强化学习中的自我博弈(self-play)

自我博弈(Self-Play)[1]是应用于智能体于智能体之间处于对抗关系的训练方法,这里的对抗关系指的是一方的奖励上升必然导致另一方的奖励下降。通过轮流训练双方的智能体就能使得双方的策略模型的性能得到显著提升,使得整个对抗系统达到正和博弈的效果。这种训练机制最早运用于跳棋游戏[2],后来在棋类,MOBA类等对抗性策略游戏中被广泛应用,例如AlphaGo、AlphaStar。

自我博弈有三个主要创新点。第一是探索课程,在稀疏奖励的环境下,将最终目标分割成若干个容易实现的小目标,每个目标都基于一定的奖励,使奖励变得稠密,并对智能体的探索行为给予一定的奖励。但随着训练的进行,探索奖励应当逐渐衰减为0。第二是对手抽样,智能体在面对过强或过弱的对手时,训练都会难以取得成效,因此环境中需要存储对手不同时期的训练版本,让较弱的一方有机会获胜,较弱的一方策略提升的同时会反过来促进较强一方变得更强。第三是鲁棒学习策略,为了防止智能体的策略拟合在某一种固定的对手身上,需要给对手引入多样性,给环境引入随机变量。

为了判断智能体的强弱,使自我博弈使用水平相近的智能体进行对抗训练,根据ML-Agents中的做法,较好的解决方式是引入ELO评级系统,这是一种计算零和游戏中两个玩家之间相对水平的方法。每一个玩家都有一个初始ELO分数(通常为1200),通过对战胜负结果更新ELO分数,假定玩家A的初始ELO分数为,玩家A的初始ELO分数为,则玩家A的预期胜利概率为:
EA=11+10RB−RA400 E_A = \frac{1}{1+10^{\frac{R_B-R_A}{400}}} EA=

### 自博弈强化学习概述 自博弈self-play)是一种特殊的强化学习训练机制,在这种机制下,代理通过与不同版本的自己互动来提升决策能力[^1]。这种方法允许代理逐步改进策略,而无需外部对手或环境提供标签数据。 #### 实现方法 在实践中,自博弈通常涉及两个主要组件: - **初始策略初始化**:创建一个基础模型作为起点。 - **迭代对抗过程**:让当前最优版与其他历史版本相互竞争,收集交互产生的经验用于更新参数。随着轮次增加,整体性能不断提高。 具体来说,AlphaGo Zero展示了如何仅依靠自博弈达到超越人类水平的表现。其核心算法结合了蒙特卡洛树搜索(MCTS)和深度神经网络(DNN),能够在围棋游戏中不断自我挑战并优化权重。 ```python import numpy as np class SelfPlayAgent: def __init__(self, model): self.model = model def play(self, opponent=None): state = initial_state() while not game_over(state): action = choose_action(state, self.model) if opponent is None: next_state = apply_move(state, action) reward = evaluate_position(next_state) train_model(self.model, (state, action, reward)) state = next_state else: # Play against another version of itself during training phase. pass def main(): agent = SelfPlayAgent(initialize_network()) for episode in range(num_episodes): agent.play(opponent=agent) if __name__ == "__main__": main() ``` 此代码片段简化地描述了一个基于自博弈框架下的智能体类定义及其基本操作逻辑。实际应用中还需要考虑更多细节如状态表示、奖励设计等。 #### 应用场景 自博弈广泛应用于多个领域,特别是在那些具有明确规则但难以穷尽所有可能性的游戏环境中表现出色。除了经典的棋盘游戏外,还包括但不限于以下几个方面: - 多智能体系统中的合作与竞争模拟; - 对抗性任务如网络安全攻防演练; - 需要长期规划的任务自动化处理,例如自动驾驶汽车路径选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微笑小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值