Codeforces Contest 1208 F Bits And Pieces —— SOSDP

本文深入解析了SOS DP算法,通过一个具体的题目,详细介绍了如何利用该算法求解特定数学问题的方法。文章首先阐述了算法的基本原理,随后通过实例展示了如何使用SOS DP算法来寻找一组数中特定表达式的最大值,最后提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This way

题意:

给你一些数,让你求 a i ∣ ( a j & a k ) a_i|(a_j\&a_k) ai(aj&ak)的最大值,i<j<k

题解:

这里有一篇可看的博客:This way
SOSDP求的是
在这里插入图片描述
也就是mask集合的所有子集的值的和
dp[s][j]就表示与集合s前i位不同的所有s的子集的前缀和。
那么这道题从后往前做,也就是枚举 a i a_i ai,然后查看对于每一位是否存在,那么在这题里dp就表示状态为s的情况有几个,并且我们只需要两个,那么只需要记录到dp[s][i]是大于1的时候即可。
我们从大到小枚举,s表示的是当前集合是什么,因为在 a i & ( 1 < < j ) a_i\&(1<<j) ai&(1<<j)为1的时候可以直接取 a i a_i ai的这一位,但是如果是0的时候我们就需要尽可能的将 a j a_j aj a k a_k ak的这一位置为1,那么s接下来这一位必须是1,这样看它就像棵字典树来着。
并且对于每一个ai,我们将他的所有子集加入到DP中,所以即使是1001状态,也能访问到1111状态

#include<bits/stdc++.h>
using namespace std;
const int N=2e6+5;
int dp[(1<<21)][21];
void add(int x,int k)
{
    if(k>20)
        return ;
    if(dp[x][k]>1)
        return ;
    dp[x][k]++;
    add(x,k+1);
    if(x&(1<<k))
        add(x^(1<<k),k);
}
int a[2000005];
int main()
{
    int n,x,ans=0;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=n;i>=1;i--)
    {
        int s=0,mx=0;
        if(i<=n-2)
        {
            for(int j=20;j>=0;j--)
            {
                if(a[i]&(1<<j))
                    mx|=(1<<j);
                else if(dp[s|(1<<j)][20]>1)
                    mx|=(1<<j),s|=(1<<j);
            }
        }
        add(a[i],0);
        ans=max(ans,mx);
    }
    printf("%d\n",ans);
    return 0;
}

关于 Codeforces Round 605 的 Problem F 题目及其解决方案,目前并未提供具体的内容作为参考依据。然而,可以基于常见的竞赛编程策略以及题目可能涉及的主题来推测其解决方法。 通常情况下,在处理复杂算法问题时,尤其是像 Codeforces 这样的平台上的高难度题目(如Problem F),可能会涉及到高级数据结构或者优化后的动态规划技术。以下是针对此类问题的一些通用技巧: ### 可能使用的算法和技术 #### 1. **高级数据结构** 如果问题是围绕高效查询和更新展开,则可能需要用到诸如线段树(Segment Tree)[^3] 或者平衡二叉搜索树(Fenwick Tree/Binary Indexed Tree)[^4]这样的高级数据结构。 ```cpp // 示例:构建简单的线段树用于区间求和操作 struct SegmentTree { int size; vector<long long> sums; void init(int n){ size = 1; while(size <n)size *=2; sums.assign(2*size,0LL); } void build(vector<int>& a,int x ,int lx ,int rx ){ if(rx-lx==1){ if(lx<(int)a.size())sums[x]=a[lx]; return ; } int m=lx+(rx-lx)/2; build(a,2*x+1,lx,m); build(a,2*x+2,m,rx); sums[x]=sums[2*x+1]+sums[2*x+2]; } void set_val(int i ,int v ,int x ,int lx ,int rx ){ if(rx-lx==1){ sums[x]=v; return ; } int m=lx+(rx-lx)/2; if(i<m)set_val(i,v,2*x+1,lx,m); else set_val(i,v,2*x+2,m,rx); sums[x]=sums[2*x+1]+sums[2*x+2]; } long long sum(int l ,int r ,int x ,int lx ,int rx ){ if(l>=rx ||r<=lx)return 0; if(lx >=l &&rx <=r )return sums[x]; int m=lx+(rx-lx)/2; long long s1=sum(l,r,2*x+1,lx,m); long long s2=sum(l,r,2*x+2,m,rx); return s1+s2; } }; ``` #### 2. **动态规划(DP)** 对于某些组合类或路径寻找的问题,动态规划可能是最有效的手段之一。通过定义状态转移方程并利用记忆化存储中间结果,能够显著降低时间复杂度[^5]。 #### 3. **图论模型转换** 部分难题可以通过建模成特定类型的图形来进行解答,比如最小生成树(MST),最大流(Max Flow)等问题都属于这一范畴。这类问题往往需要借助成熟的库函数或是自己实现相应的算法逻辑[^6]。 由于缺乏具体的题目描述信息,上述仅为假设性的分析方向。为了获得更精确的指导建议,请提供更多有关该道题目的细节说明。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值