Codeforces 1326 F1. Wise Men (Easy Version) —— SOS DP,有丶东西

这篇文章探讨了一种解决社交网络中判断人与人关系并构造p序列的复杂问题,通过独特的dp方法求解,展示了如何在给定限制条件下计算不同s状态的可能p序列数量。作者详细解释了dp状态转移和计算过程,涉及位运算和动态规划状态的设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This way

题意:

现在有n个人,告诉你他们相互是否认识。
你要构造一个长度为n的p序列,对于s状态(s长度为n-1),第i位是0表示第p[i]和p[i+1]这个人不认识,否则就认识。
现在对于 s ∈ [ 0 , 2 n − 1 ] s∈[0,2^{n-1}] s[0,2n1],问你每种情况你能构造多少个p序列

题解:

有点做不出来…
这个做法的空间赋予情况真的是太强了
dp[i][j][k]表示当前人的状态为i,最后一个人是j,满足的s状态的前__builtin_popcount(i)位为k的时候,答案是多少
转移式:
dp[i|(1<<k)][k][s+(f<<__builtin_popcount(i)-1)]+=dp[i][j][s];
表示新进来的人的下标为k的时候,状态s可以在第(f<<__builtin_popcount(i)-1)位加上一个1/0,表示满足题目第__builtin_popcount(i)-1位的需求
太强了第一次见到这种DP写法

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
const int N=14,M=(1<<N)+5;
int mp[N][N];
vector<ll>dp[M][N];
ll ans[M];
int n,m,mx;
int main()
{
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            scanf("%1d",&mp[i][j]);
    for(int i=1;i<(1<<n);i++)
        for(int j=0;j<n;j++)
            if(i>>j&1)
                dp[i][j]=vector<ll>(1<<__builtin_popcount(i)-1,0);
    for(int i=0;i<n;i++)
        dp[1<<i][i][0]=1;
    mx=(1<<n);
    for(int i=1;i<mx;i++){
        for(int j=0;j<n;j++){
            if(!(i&(1<<j)))continue;
            int sz=dp[i][j].size();
            for(int s=0;s<sz;s++){
                for(int k=0;k<n;k++){
                    if(i&(1<<k))continue;
                    int f=mp[j][k]==1;
                    dp[i|(1<<k)][k][s+(f<<__builtin_popcount(i)-1)]+=dp[i][j][s];
                }
                    if(i==mx-1)
                        ans[s]+=dp[i][j][s];
            }
        }
    }
    for(int i=0;i<(1<<n-1);i++)
        printf("%lld%c",ans[i]," \n"[i==(1<<n-1)]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值