题意:
有n个石头,每个石头都可以变成五行当中的一种,问你有多少种变换方法满足下列要求
题解:
生成函数在特殊情况下可以转换成组合数公式,推荐一篇文章:This way
第一个条件:必须是6的倍数,那么就是
1
1
−
x
6
\frac{1}{1-x^6}
1−x61
第二个条件就是
1
−
x
10
1
−
x
\frac{1-x^{10}}{1-x}
1−x1−x10
其实每个条件都是独立的,那么满足所有条件就相当于将所有条件乘起来:
1
(
1
−
x
)
5
=
C
n
+
4
4
\frac{1}{(1-x)^5}=C_{n+4}^4
(1−x)51=Cn+44
数很大,需要用NTT,第一次学NTT,保存一个模板,不太懂原理,新人注意几个点:
ntt是取模意义下的运算,fft是浮点运算
ntt中需要取模,但是在大数乘法的时候,进位注意不能取模,因此在每一次运算完之后都需要进位(可能吧)
此ntt中,0是低位
ntt中运算的长度需是2的幂次,如果原本数组长度不够,在数组后面填0
ntt运算后数组每个位不一定<10,因此需要进位
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define g 3//模数的原根
const int N=2e6+5;
const ll mod=998244353;//通常情况下的模数
ll qpow(ll a,ll b){ll ans=1;for(;b;b>>=1,a=a*a%mod)if(b&1)ans=ans*a%mod;return ans;}
int rev[N];
void ntt(ll *a,int len,int inv)
{
int bit=0;
while ((1<<bit)<len)++bit;
for(int i=0;i<len;i++)
{
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
if (i<rev[i])swap(a[i],a[rev[i]]);
}
for(int mid=1;mid<len;mid*=2)
{
ll tmp=qpow(g,(mod-1)/(mid*2));
if(inv==-1)tmp=qpow(tmp,mod-2);
for(int i=0;i<len;i+=mid*2)
{
ll omega=1;
for(ll j=0;j<mid;++j,omega=omega*tmp%mod)
{
int x=a[i+j],y=omega*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod,a[i+j+mid]=(x-y+mod)%mod;
}
}
}
}
ll inv;
void cal(ll *a,ll *b,int len){
ntt(a,len,1),ntt(b,len,1);
for(int i=0;i<len;i++)
a[i]=a[i]*b[i]%mod;
ntt(a,len,-1);
for(int i=0;i<len;i++)
a[i]=(a[i]*inv)%mod;
for(int i=0;i<len;i++)
a[i+1]+=a[i]/10,a[i]%=10;//每一次都要做一遍,因为ntt中的运算可以取模,但是外面的运算不能,需要每一次都进位一下
}
ll a[5][N];
char s[N];
int main()
{
scanf("%s",s);
int n=strlen(s);
int ret=1;
while(ret<=n*5)ret*=2;
reverse(s,s+n);
for(int i=0;i<n;i++)
for(int j=1;j<=4;j++)
a[j][i]=s[i]-'0';
for(int i=1;i<=4;i++)//ntt前对每一位不需要严格<10
a[i][0]+=i;
inv=qpow(ret,mod-2);
for(int i=2;i<=4;i++)
cal(a[1],a[i],ret);
for(int i=ret-1;i;i--)
a[1][i-1]+=(a[1][i]%24)*10,a[1][i]/=24;
a[1][0]/=24;
int f=0;
for(int i=ret;~i;i--)
if(f||a[1][i])
f=1,printf("%lld",a[1][i]);
printf("\n");
return 0;
}