There is a dice with n sides, which are numbered from 1,2,...,n and have the equal possibility to show up when one rolls a dice. Each side has an integer ai on it. Now here is a game that you can roll this dice once, if the i-th side
is up, you will get ai yuan. What's more, some sids of this dice are colored with a special different color. If you turn this side up, you will get once more chance to roll the dice. When you roll the dice for the second time, you still have the opportunity
to win money and rolling chance. Now you need to calculate the expectations of money that we get after playing the game once.
The first line is an integer n (2<=n<=200), following with n integers a i(0<=ai<200)
The second line is an integer m (0<=m<=n), following with m integers b i(1<=b i<=n), which are the numbers of the special sides to get another more chance.
6 1 2 3 4 5 6 0 4 0 0 0 0 1 3
3.500.00
题意:
给你一个n面的骰子每个面有一个值然后其中有不同值代表你能获得的钱
然后有m个特殊的面——当你骰到这一面的时候可以获得一个新的机会
问你能得到钱的期望
思路:首先期望=总和/个数
先求出n面骰子的面值之和sum
一次的期望:sum/n
二次的期望:m/n*sum/n
三次的期望:m/n*m/n*sum/n
。。。。
。。。。
。。。。
设m/n=x这样最后的期望就是:
E=sum/n*(1+x+x^2+....x^k)
后边是一个等比数列求和(当k为无穷大的时候)
最后化简为E=sum/(n-m),根据化简后的公式当sum=0和n==m的时候需要特判
ac代码:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; int main() { int n,m,x; while(cin>>n) { int sum=0; for(int i=1;i<=n;i++) scanf("%d",&x),sum+=x; cin>>m; for(int i=1;i<=m;i++) scanf("%d",&x); if(sum==0) printf("%.2lf\n",0.0); else if(m==n) printf("inf\n"); else printf("%.2lf\n",(double)sum/(n-m)); } return 0; }