
卷积神经网络
tim_mary
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LeNet学习笔记(训练cifar10数据集和mnist数据集pytorch)
网络结构 LeNet现在主要指LeNet5,主要特征是将卷积层和下采样层相结合作为网络的基本结构。 输入为一个矩阵或者图像,大小为32X32。不计输入层,这个模型共有7层,3个卷积层,2个下采样层,1个全连接层和1个输出层。 **C1:第一个卷积层。**包含6个卷积特征图,每个特征图大小为28X28,由一个5X5的卷积核对输入图像进 行内卷积运算得到。 **S2:第一个下采样层(池化层)。...原创 2019-09-19 23:27:00 · 2192 阅读 · 0 评论 -
AlexNet学习笔记(再次进行cifar10数据分类)
网络结构 网络结构如图所示,包含5个卷积层和3个全连接层。其中,有3个卷积层进行了最大池化。 AlexNet各层组织结构如表所示,其中conv表示卷积运算操作,ReLU表示校正线性单元,pool表示池化操作,norm表示局部响应归一化,dropout表示丢失输出操作,IP表示全连接。 ...原创 2019-09-23 22:16:23 · 704 阅读 · 0 评论