题目:
给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入格式
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出格式
输出一个整数,代表K倍区间的数目。
样例输入
5 2
1
2
3
4
5
样例输出
6
数据规模和约定
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
思路:
做一道题,首先要先看看题目中给出的数据的范围,(整数N和K:(1 <= N, K <= 100000),整数Ai:(1 <= Ai <= 100000)),这个范围双层for就要炸了,所以一定要去找到一个合适的方法去处理这道题。
由题目中的这句话:“A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数”,我们可以知道,一个数字也可以构成一个区间。
这道题要求区间和是K的倍数,那么前缀和是一定要用的,这样可以减少很多求和的运算量,当然取模也要用,不然long long 存不下;
用一个数组存储下来取余后的数值的结果,当两个数值一样时,那么这个区间肯定可以构成K的整数倍(脑子不好用,想了好久才想到,当两个数值相等时,相减肯定是0,那么这个区间的和肯定就是K的倍数,脑子不行了还想了半天)。
当然要注意,当它自己本身就是0(即是K的整数倍),那么这个区间就它一个元素,和也是K的整数倍,也是一种情况,最后记得一定要加上。
代码如下:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m;
int a[100010],b[100010],c[100010];
// 数值 前缀和 取余后和为i的个数;
int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(a,0,sizeof a);
memset(b,0,sizeof b);
memset(c,0,sizeof c);
long long int sum=0;
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
b[i]=(b[i-1]+a[i])%m;//前缀和,记得取余,否则数值太大;
sum+=c[b[i]];//两个数值相等时必定有一个区是K的倍数;
c[b[i]]++;//个数记得加一;
}
printf("%lld\n",sum+c[0]);//记得加上自己可以构成一个区间的情况;
}
return 0;
}