“本地化部署”(On-Premises Deployment)是一种将应用程序、服务或组件部署在本地服务器或设备上的方法
也就是让AI工具直接在你自己的电脑上运行,随时随地可以得到想要的答案
我们这次用到的两个软件分别是ollama和chatbox,同时要说明的是,我们在本地化部署的并不是deepseek本身,而是蒸馏后的模型
接下来和大家分享本地化部署的具体步骤:
亲自实操完整流程
Windows 方式
1.下载并安装ollama
在👉 ollama官网直接下载即可(可直接打开),安装包下载好后直接按照即可
安装结束后,可以调出CMD(win+r)输入ollama来验证安装是否成功
2.安装deepseek模型
在之前的ollama官网可以下载deepseek模型
下载完成后,可以输入ollama list来验证模型是否下载成功
Moc 安装方式
1.下载并安装ollama
选择 mac 对应的芯片类型安装包
复制下面的安装命令
打开 mac 终端 粘贴对应的命令
安装完 ollama 安装deepseek模型
2.安装deepseek模型
其实两端的操作实践是一样一样的~
装chatbox 可视化终端
现在已经可以在本地运行deepseek模型,但在命令行中使用不是很方便,所以我们可以再配合chatbox提高使用效率
按照自己系统下载对应安装包即可
👉 官网下载安装即可
👉 安装完成后打开应用,设置deepseek模型
设置好后就可以在自己的电脑上顺畅运行deepseek模型,需要什么答案都可以随时问它
由于我的机器配置比较低,回答内容比较慢 💔
AI工具对我们的生活产生了深远的影响,它不仅提升了效率和便利性,还改变了我们处理问题的方式
然而,随着AI工具的广泛应用,我们也需要注意其潜在的问题和挑战
过度依赖AI可能导致人类思维能力下降,或者在伦理问题上引发争议
因此,如何合理利用AI工具,平衡其带来的便利与可能的风险,是一个值得深思的话题