R数据分析:孟德尔随机化中介的原理和实操

中介本身就是回归,基本上我看到的很多的调查性研究中在中介分析的方法部分都不会去提混杂,都是默认一个三角形画好,中介关系就算过去了,这里面默认的逻辑就是前两步回归中的混杂是一样的,计算中介效应的时候就自动消掉了。

但是,实际上对不对,还是有待具体分析的:

Traditional, non-instrumental variable methods for mediation analysis experience a number of methodological difficulties, including bias due to confounding between an exposure, mediator and outcome and measurement error

孟德尔随机化作为一个天然的免去混杂的方法,和中介结合,整个中介又变得更纯净了,是一种更加值得推崇的中介做法,也是孟德尔随机化研究的必要的延申。

今天给大家介绍孟德尔随机化中介分析的两个方法multivariable MR (MVMR) and two-step MR

先回顾中介作用

中介分析的基本的概念,就是大家熟悉的三角形:

c是总效应,加上中介变量后,A*B是间接效应,C'是直接效应,有总效应=间接效应+直接效应。

上图中如果总效应,直接效应和间接效应方向都相同的情况下,我们还可以报告中介效应比例,为间接效应比上总效应。

上面的图中的中介效应成立依赖几个假设:

首先就是没有混杂,包括变量之间没有混杂(或者像前面写的直接抵消

孟德尔随机化是一种用于实验设计数据分析的方法,用于控制实验中的混杂因素。它可以帮助研究者确定因果关系,并降低偏差的可能性。然而,孟德尔随机化本身并不能提供我们所需要的值,比如间接效应的标准误差中介比例的标准误差。在这种情况下,可以借助一种方法叫做delta method来计算这些值。 Delta method是一种用于计算函数的方差的方法,它可以通过近似计算来确定函数的标准误差。在这种情况下,delta method可以用于计算中介效应ab的置信区间中介占比的置信区间。 Propagation of error是指确定计算结果的不确定度与各个测量结果的不确定度之间的关系的方法。它可以帮助我们确定计算结果的标准误差。在使用Two-step MR得到ab之后,可以使用Propagation of error方法计算中介效应ab的置信区间,同时使用商的标准差算法计算中介占比的置信区间。 因此,当我们需要获得孟德尔随机化的delta method时,我们可以通过使用Propagation of error商的标准差算法来计算中介效应的置信区间中介占比的置信区间。 <span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [R数据分析孟德尔随机化中介原理实操二](https://blog.csdn.net/tm_ggplot2/article/details/128960105)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值