Flex中的嵌入资源(Embedding Assets)

本文介绍如何在Flex软件中嵌入资源,包括图片、影片等,并探讨其优缺点。通过实例展示不同场景下资源嵌入的方法,如直接嵌入图片到按钮、利用变量引用资源及在样式表中定义资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flex软件中经常需要使用一些外部的资源,如图片、声音、SWF或字体,虽然你也可以在软件运行的时候引入和载入,但是也可能经常需要直接将这些资源编译(Compile)到软件中,也就是直接嵌入资源(Embedding Assets)。Flex中可以直接嵌入图片image,影片movie,MP3,和TrueType文字。

嵌入资源的利处:

1、比起在运行时访问资源,对嵌入资源的访问速度更加快速;

2、可以用简单的变量访问方式,在多个地方引用所嵌入的资源。这是变量就代表资源,提高写代码的效率;

嵌入资源的弊处:

1、增大了SWF文件的大小,因为是将资源直接包含;

2、由于SWF文件增大,将使得初始化的速度变慢;

3、当资源改变后,需要重新编译SWF文件;

例子1:一个简单的嵌入资源的例子:

<?xml version=”1.0”?>
<!-- embed/ButtonIcon.mxml -->
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
             <mx:Button label=”Icon Button” icon=”@Embed(source=’logo.gif’)"/>
</mx:Application>

以上粗体部分,使用了@Embed()指令,将logo.gif这个图片直接嵌入到程序中,作为Button按钮的Icon图标。

例子2:用变量引用嵌入的资源

<?xml version="1.0"?>
<!-- embed/ButtonIconClass.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
             <mx:Script>
                 <![CDATA[
                     [Embed(source="logo.gif")]
                     [Bindable]
                     public var imgCls:Class;

                 ]]>
             </mx:Script> ADOBE FLEX 3 BETA 2

             <mx:Button label="Icon Button 1" icon="{imgCls}"/>
             <mx:Button label="Icon Button 2" icon="{imgCls}"/>

以上粗体部分,表示将logo.gif图片嵌入,并让变量imgCls可以引用该资源。[Bindable]表示该变量imgCls是可以被数据绑定的。之后,就可以在多个地方引用该嵌入资源的变量(见红色粗体)。

另外也可以通过Embed()指令,在样式表中嵌入资源,这通常是在设置UI组件的皮肤时候使用。如下代码:

<?xml version="1.0"?>
<!-- embed/ButtonIconCSS.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
            <mx:Style>  
                .myCustomButton {
            overSkin:Embed(source="overIconImage.gif");
            upSkin:Embed(source="upIconImage.gif");
            downSkin:Embed(source="downIconImage.gif");
                }
            </mx:Style>
            <mx:Button label="Icon Button Style Def" styleName="myCustomButton"/>
</mx:Application>

以上代码表示在按钮的常态(up)、鼠标悬停(over)、鼠标按下(down)的状态,使用不同的皮肤。overSkin、 upSkin、downSkin是Button的对应状态下的皮肤属性。

可嵌入的资源文件格式:

嵌入资源的语法:
根据嵌入位置的不同,语法也各不同:
1、[Embed(parameter1, paramater2, ...)] 元数据标签
           这主要在AS文件中,或MXML文件中的 <mx:Script>标签中使用。
2、@Embed(parameter1, paramater2, ...) 指令
           这主要在MXML标签中使用。
3、Embed(parameter1, paramater2, ...) 指令
           这主要在 <mx:Style> 样式表中使用。
根据情况的不同嵌入资源Embed的返回类型可以是Class或String。
对嵌入的图片资源进行9格缩放(9-slice scaling)
9格图就是把一个图片切分成9个格子,如图:
中间的5区为内容区,将正常缩放;1、3、7、9为角,不进行缩放;2、8将横向缩放;4、6将纵向缩放。
见代码:
<?xml version="1.0"?>
<!-- embed/Embed9slice.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
        width="1200" height="600">
        <mx:Script>
            <![CDATA[
                [Embed(source="slice_9_grid.gif",
                   scaleGridTop="25", scaleGridBottom="125",
                    scaleGridLeft="25", scaleGridRight="125"
)]
                [Bindable]
                public var imgCls:Class;            
            ]]>
        </mx:Script>
    
        <mx:HBox>
            <mx:Image source="{imgCls}"/>
            <mx:Image source="{imgCls}" width="300" height="300"/>
            <mx:Image source="{imgCls}" width="450" height="450"/>
        </mx:HBox>
</mx:Application>
以上代码中,图片slice_9_grid.gif为30px * 130px大小。通过scaleGridTop、scaleGridBottom、scaleGridLeft、scaleGridRight,上下左右分别留出了5px的边。放大后的结果如图:
以上的9格子方法在制作图片为背景的UI控件皮肤中,是非常有用的。
### 词嵌入Embedding)的概念 词嵌入是一种将词汇转换为数值向量的技术,这些向量能够表示词汇的语义信息[^2]。具体来说,词嵌入通过学习词汇与其上下文的关系,在一个低维实数向量空间中表示单词,从而捕捉词语之间的语义和句法关系[^4]。 相比于传统的独热编码(One-Hot Encoding),词嵌入具有显著优势。独热编码虽然简单易实现,但由于其高维度特性以及缺乏语义信息的表现能力,往往导致计算复杂度增加并难以表达词汇间的关联性。而词嵌入则能有效解决这些问题,因为它可以将相似意义的词汇映射到相近的空间位置上[^2]。 --- ### 基本原理与方法 #### 分布式语义学基础 词嵌入的核心思想来源于“分布式语义学”理论,该理论认为词语的意义可以通过它们所处的上下文环境推断出来。换句话说,如果两个词经常出现在相同的上下文中,则这两个词很可能具有某种意义上的相似性[^1]。 #### 主要方法 目前主流的词嵌入生成方式有多种,其中最著名的当属 **Word2Vec** 方法。以下是几种常见的词嵌入技术: - **CBOW (Continuous Bag of Words)**:利用周围单词预测目标单词。 - **Skip-Gram**:给定某个单词,尝试预测它的邻近单词。 这两种模型均属于浅层神经网络架构,旨在最大化特定窗口内的条件概率分布函数[^2]。 此外还有其他改进版本和技术框架如 GloVe 和 FastText 等进一步优化了训练效率及效果表现。 --- ### 应用场景 由于具备强大的语义捕获能力和高效的数据压缩特点,词嵌入被广泛应用至各类 NLP 领域任务当中,包括但不限于以下几个方面: 1. 文本分类:通过对文档整体特征提取完成情感分析、主题识别等工作; 2. 机器翻译:作为源语言输入端口的一部分参与序列建模过程; 3. 句子相似度评估:衡量两句话之间潜在含义上的距离远近程度; 4. 实体链接/命名实体识别:辅助发现隐藏模式帮助标注未见过的新样本类别标签等等... 下面给出一段简单的 Python 示例代码展示如何加载预训练好的 word embedding 并查询指定 token 对应 vector 表达形式: ```python from gensim.models import KeyedVectors # 加载 Google 提供的标准版 Word2Vec 模型文件路径需自行下载配置好 model_path = 'GoogleNews-vectors-negative300.bin' wv_model = KeyedVectors.load_word2vec_format(model_path, binary=True) word_vector = wv_model['king'] # 获取 "king" 这个词对应的 dense 向量 print(word_vector.shape) # 输出形状应该是 (300,) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值