Leetcode: NO.486 预测赢家 深度优先+动态规划

本文探讨了一种分数游戏的策略问题,其中两名玩家轮流从数组两端拿取分数,目标是预测玩家1是否能赢得比赛。通过递归和动态规划的方法,文章详细解析了如何计算最优策略下玩家1的得分,从而判断其胜算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例 1:

输入:[1, 5, 2]
输出:False
解释:一开始,玩家1可以从12中进行选择。
如果他选择 2(或者 1 ),那么玩家 2 可以从 1(或者 2 )和 5 中进行选择。如果玩家 2 选择了 5 ,那么玩家 1 则只剩下 1(或者 2 )可选。
所以,玩家 1 的最终分数为 1 + 2 = 3,而玩家 25 。
因此,玩家 1 永远不会成为赢家,返回 False 。
示例 2:

输入:[1, 5, 233, 7]
输出:True
解释:玩家 1 一开始选择 1 。然后玩家 2 必须从 57 中进行选择。无论玩家 2 选择了哪个,玩家 1 都可以选择 233 。
     最终,玩家 1234 分)比玩家 212 分)获得更多的分数,所以返回 True,表示玩家 1 可以成为赢家。
提示:

1 <= 给定的数组长度 <= 20.
数组里所有分数都为非负数且不会大于 10000000 。
如果最终两个玩家的分数相等,那么玩家 1 仍为赢家。

链接:https://leetcode-cn.com/problems/predict-the-winner

解题记录

设定step[left][right]为在left~right这段区间中玩家1和玩家2的差值,当前玩家1选着

  • 通过递归,选左边为leftScore = nums[left] - dfs(left+1, right);
  • 选右边rightScore = nums[right] - dfs(left, right-1);
  • 最优为差值最大
/**
 * @author: ffzs
 * @Date: 2020/9/1 上午7:10
 */
public class Solution {
    int[][] step;
    int[] nums;
    public boolean PredictTheWinner(int[] nums) {
        int n = nums.length;
        step = new int[n][n];
        this.nums = nums;
        for (int[] ints : step) {
            Arrays.fill(ints, Integer.MIN_VALUE);
        }

        return dfs(0, n-1) >= 0;
    }

    private int dfs (int left, int right) {
        if (left > right) return 0;

        if (step[left][right] != Integer.MIN_VALUE) return step[left][right];

        int leftScore = nums[left] - dfs(left+1, right);
        int rightScore = nums[right] - dfs(left, right-1);
        int score = Math.max(leftScore, rightScore);
        step[left][right] = score;
        return score;
    }
}

在这里插入图片描述

  • 递归是正着想,机器倒着做
  • 动态规划化是倒着想,机器正着做
/**
 * @author: ffzs
 * @Date: 2020/9/1 上午8:37
 */

public class Solution2 {
    public boolean PredictTheWinner(int[] nums) {
        int n = nums.length;
        int[][] dp = new int[n][n];

        // 先填上分界线
        for (int i = 0; i < n; i++) dp[i][i] = nums[i];
        // 因为要获得 ij ,因此需要优先获取i+1,j-1等,所以从后向前获取
        for (int i = n-2; i >= 0; i--) {
            for (int j = i+1; j < n; j++) {
                dp[i][j] = Math.max((nums[i] - dp[i+1][j]), (nums[j] - dp[i][j-1]));
            }
        }
        return dp[0][n-1] >= 0;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值