线性代数:矩阵乘法

本文探讨矩阵乘法的基本概念,包括左乘和右乘的影响,矩阵A乘以B对应于A的列变换,而B乘以A对应于A的行变换。通过实例展示了矩阵乘法的计算过程,并提到了Strang教授关于矩阵乘法和逆矩阵的额外解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵B\bf BB右乘矩阵A\bf AA,则相当于对A\bf AA进行列变换,矩阵B\bf BB左乘矩阵A\bf AA,则相当于对A\bf AA进行行变换。矩阵A\bf AA和矩阵B\bf BB相乘的结果C\bf CCA\bf AA的线性组合。
假设矩阵A=[a11a12a13a21a22a23a31a32a33]=[col1col2col3]=[row1row2row3]\mathbf{A}=\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}=\begin{bmatrix}\mathbf{col_1}&\mathbf{col_2}&\mathbf{col_3}\end{bmatrix}=\begin{bmatrix}\mathbf{row_1}\\ \mathbf{row_2}\\ \mathbf{row_3}\end{bmatrix}A=a11a21a31a12a22a32a13a23a33=[col1co

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值