记录一下各种常见排序算法的比较。
名称 | 思想 | 最好时间复杂度 | 最坏时间复杂度 | 平均时间复杂度 | 空间复杂度 | 是否稳定 |
---|---|---|---|---|---|---|
冒泡排序 | 两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止 | O(n)O(n)O(n) | O(n2)O(n^2)O(n2) | O(n2)O(n^2)O(n2) | O(1)O(1)O(1) | 是 |
插入排序 | 把nnn个待排序的元素看成为一个有序表和一个无序表。开始时有序表中只包含1个元素,无序表中包含有n−1n-1n−1个元素,排序过程中每次从无序表中取出第一个元素,将它插入到有序表中的适当位置,使之成为新的有序表,重复n−1n-1n−1次可完成排序过程 | O(n)O(n)O(n) | O(n2)O(n^2)O(n2) | O(n2)O(n^2)O(n2) | O(1)O(1)O(1) | 是 |
简单选择排序 | 通过n−in-in−i次关键字之间的比较,从n−i+1n-i+1n−i+1个记录中选择关键字最小的记录,并和第i(1≤i≤n)i(1 \le i \le n)i(1≤i≤n)个记录交换之 | O(n2)O(n^2)O(n2) | O(n2)O(n^2)O(n2) | O(n2)O(n^2)O(n2) | O(1)O(1)O(1) | 否 |
归并排序 | 分治算法,是建立在归并操作上的一种有效的排序算法。常用的2路归并排序假设初始序列有nnn个记录,可以看成是nnn个长度为1的子序列,进行两两归并,可以得到n2\frac{n}{2}2n个长度为2的子序列;再两两归并,直到得到一个长度为nnn的有序序列为止 | O(nlogn)O(nlogn)O(nlogn) | O(nlogn)O(nlogn)O(nlogn) | O(nlogn)O(nlogn)O(nlogn) | O(n)O(n)O(n) | 是 |
堆排序 | 把待排序的序列构造成一个大顶堆,此时序列的最大值就是队顶元素,把该元素放在最后,然后对剩下的n−1n-1n−1个元素继续构造大顶堆,直到排序完成 | O(nlogn)O(nlogn)O(nlogn) | O(nlogn)O(nlogn)O(nlogn) | O(nlogn)O(nlogn)O(nlogn) | O(1)O(1)O(1) | 否 |
快速排序 | 通过一趟排序将待排记录分割成独立的两部分,其中一部分的记录都比另一部分小,然后再分别对这两个部分进行快速排序,最终实现整个序列的排序 | O(nlogn)O(nlogn)O(nlogn) | O(n2)O(n^2)O(n2) | O(nlogn)O(nlogn)O(nlogn) | O(logn)O(logn)O(logn) | 否 |