预测算法-线性回归(鲍鱼年龄预测)

本文介绍了线性回归及其在鲍鱼年龄预测中的应用,包括标准方程法、局部加权线性回归(LWLR)以解决欠拟合问题。当面对不可逆矩阵时,提出了岭回归作为解决方案。此外,讨论了套索方法(LASSO)和前向逐步回归等进一步的回归策略,这些方法在处理特征过多或相关性高的情况下,有助于提高预测精度和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预测算法-线性回归

面对可逆矩阵

线性回归(模型,策略,算法)
模型: h(x)=WTx+bh(x)=WTx+b
损失函数: J(θ)=i=1N(f(xi)yi)2J(θ)=∑i=1N(f(xi)−yi)2
目标函数为:minJ(θ)=i=1N(f(xi)yi)2minJ(θ)=∑i=1N(f(xi)−yi)2

方法1:梯度下降法
θ=θαJ(θ)θ=θ−α▽J(θ)
α:α:学习速率
J(θ):▽J(θ):偏导数学习的方向

方法2:标准方程法
目标函数为: minJ(θ)=i=1N(f(xi)yi)2minJ(θ)=∑i=1N(f(xi)−yi)2
转化为:(yixTiw)T(yixTiw)(yi−xiTw)T(yi−xiTw)
w:w^=(xTx)1xTy对w求导:w^=(xTx)−1xTy

xTxxTx的行列式不为0时,存在逆矩阵 那么条件成立, 才能计算w^

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值