预测算法-线性回归
面对可逆矩阵
线性回归(模型,策略,算法)
模型: h(x)=WTx+bh(x)=WTx+b
损失函数: J(θ)=∑i=1N(f(xi)−yi)2J(θ)=∑i=1N(f(xi)−yi)2
目标函数为:minJ(θ)=∑i=1N(f(xi)−yi)2minJ(θ)=∑i=1N(f(xi)−yi)2
方法1:梯度下降法
θ=θ−α▽J(θ)θ=θ−α▽J(θ)
α:学习速率α:学习速率
▽J(θ):偏导数学习的方向▽J(θ):偏导数学习的方向
方法2:标准方程法
目标函数为: minJ(θ)=∑i=1N(f(xi)−yi)2minJ(θ)=∑i=1N(f(xi)−yi)2
转化为:(yi−xTiw)T(yi−xTiw)(yi−xiTw)T(yi−xiTw)
对w求导:w^=(xTx)−1xTy对w求导:w^=(xTx)−1xTy
xTxxTx的行列式不为0时,存在逆矩阵 那么条件成立, 才能计算w^模型参