Deep Learning 读书笔记(十)

本文是Deep Learning读书笔记,介绍了一篇使用无监督学习方法ISA(独立子空间分析)从视频中自动学习动作识别特征的文章。ISA是ICA的扩展,通过stacking和卷积加速学习,用于捕捉时空特征。模型的第一层学习权值,第二层固定,实现特征下采样。实验表明ISA对位置变化有不变性,但对频率和旋转敏感。模型在视频数据上的应用通过批投影梯度下降法进行训练,可用于运动检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        这次读的这篇文章的题目是:“Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis”。

        原来在动作识别领域所使用的方法一般都是人工选取的特征。本篇文章的工作就是使用了一种无监督的学习方法自动地从视频中学习特征。所使用到的方法是Independent Subspace Analysis(ISA)。文章中对该算法进行了一些改进,主要是使用了stacking和卷积两种方法,使模型能够对分层特征进行更好的学习。

        ISA算法是Independent Component Analysis(ICA)算法的扩展,它们在natural image statistic领域内都是非常著名的。ISA算法的优点就是“robust to local translation while being selective to frequency, rotation and velocity”。而它的缺点则在于当输入数据的维度非常大时,算法的学习速度就会非常慢。所以文章使用了stacking和卷积的方法来加快学习的速度。具体的步骤为:先在small input patches上学习特征,再对学习到的特征进行卷积,将卷积的结果输入到下一层网络中去。

        ISA的网络结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值