机器学习算法(七):朴素贝叶斯方法

朴素贝叶斯方法是基于贝叶斯定理和特征条件独立假设的分类算法。它通过学习输入/输出的联合概率分布,利用贝叶斯定理求解后验概率最大的输出。条件独立假设简化了算法,但可能导致分类准确性下降。文章涵盖了贝叶斯决策论、拉普拉斯平滑等概念,并讨论了朴素贝叶斯在实际任务中的应用和学习策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习算法(七):朴素贝叶斯方法

朴素贝叶斯方法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对于给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。

朴素贝叶斯方法实际上学习到生成数据的机制,所以属于生成模型。条件独立假设是用于分类的特征在类确定的条件下都是条件独立的。这一假设使朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率,因为忽略掉了各项之间的联系。

贝叶斯决策论

假设有N种可能的类别标记,即y={ c1,c2,...,cN}λij是将一个真是标记为cj的样本误分类为ci所产生的损失。基于后验概率P(cj|x)可获得将样本x分类为ci所产生的期望损失,即在样本x上的『条件风险』:

R(ci|x)=j=1NλijP(cj|x)

我们的任务是寻找一个判定准则h:XY以最小化总体风险:

R(h)=Ex[R(h(x)|x)]

对每个样本x,若h能最小化条件风险R(h(x)|x),则总体风险R(h)也能被最小化。这就产生了贝叶斯判定准则:为最小化总体风险,只需要在每个样本上选择那个能使条件风险

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值