人们常说“就算学了数学,在社会上也派不上什么用场”。然而事实并非如此。数学为我们的工作与生活提供支持,甚至可以说“世界是由数学建立的”。
举例来说……
现在要把一张 A4 大小的海报放大至 A3 大小。因为纸张大小满足“白银比例”,所以图案不会变形,操作起来很方便。
气象局预测樱花将在下周一开放。气象局之所以能够这样预测,是因为运用了“积分”。
“他那么帅,肯定有女朋友。”听到这句话,你是不是觉得哪里不对?假如你怀疑它的因果关系,可以用“反证法”
想一想。
诸如此类日常生活中的场景,都会用到数学。
只要掌握了数学思维,就能有逻辑地思考事物。
《原来数学这么有用》的作者鹤崎修功从三岁起就沉浸在“数学沼泽”中的东京大学数学系博士,力图用日常生活中的案例(如A4纸放大、樱花预测、自助餐食物增量等)解读数学原理,让数学不再抽象。
通过这本书邀你领略数学之美、之趣、之用。无论是对数学有恐惧情绪的文科生,还是对数学着迷的理科生,都能在这本书中轻松获得有趣的知识和有效的应试技巧。
来源 | 《原来数学这么有用》
作者 | [日] 鹤崎修功
译者 | 佟凡
节选自 深奥的曲线世界
01
用“微分”可以预测未来
汽车上装有速度仪表盘,可以显示行驶中的实时速度。举例来说,“时速 60 km”的意思是“以每小时 60 km的速度行驶”,可是为什么汽车明明没有行驶到 1 小时,人们却能知道它的时速呢?想想就觉得很不可思议。其实这里用到了“微积分”中的“微分法”。
首先,我要为大家介绍什么是微分法。
假设我们穿越到 16 世纪的欧洲。当时,欧洲各国之间不断发生战争。在这一背景下,为了保证大炮能够命中对手,各国对炮弹飞行轨迹的研究进行得如火如荼。伽利略·伽利雷发现飞行中的炮弹会受到重力作用落向地面,由此他认为可以将炮弹前进的速度分解成受到重力下落的速度和沿水平方向直线飞行的速度。然后他又发现,飞行中的炮弹在水平方向速度保持不变,只有垂直方向的速度会随着时间推移发生变化,原本向上的速度会逐渐变慢,最终减到 0,之后下落速度逐渐加快。
后来进入 17 世纪,法国数学家、哲学家勒内·笛卡儿(1596—1650)通过发明坐标系,发现炮弹的轨迹可以用二次函数的图像表示。因此二次函数曲线也被称为“抛物线”。通过用二次函数的图像表示炮弹轨迹,还能计算出炮弹的落点。
当时的数学家们还希望能通过计算推导出炮弹每时每刻的速度变化。如果能够求出与二次函数曲线只有一点相交的直线的方程,这条直线叫作“切线”,那么这条直线的斜率就可以表示瞬时速度。而求切线的新方法正是微分法。也就是说,微分法可以求出运动中的物体的瞬时速度。发明微分法的是天才科学家艾萨克·牛顿,他在1665 年,也就是年仅 22 岁时就发明了微分法。
至于通过微分法可以知道什么,让我们回到本节开头关于汽车速度仪表盘的话题。用平面坐标系的纵轴表示移动距离,横轴表示移动时间,然后画出表示移动距离与移动时间的关系的曲线。这时,与曲线只有一点相交的切线的斜率就表示汽车在这一时刻的速度。
在实际生活中,人们会在汽车轮胎上安装检测轮胎滚动情况的传感器,轮胎每转一圈,传感器都会发出相应次数的信号。速度越快,信号与信号的间隔时间越短;速度越慢,信号与信号的间隔时间越长。
因为轮胎转动一圈前进的距离是固定的,但速度会随时发生变化,所以信号间隔时间也会随之发生改变。然后再利用汽车上搭载的计算机根据每个瞬间的信号间隔时间进行分析,就能计算出汽车行驶的速度。因此可以说,利用微分的思维能预测未来。
02
为什么电子体温计可以在 30 秒内预测体温
我们熟悉的电子体温计也用到了微分法。电子体温计有实测型和预测型两种。实测型需要花 5 ~ 10 分钟才能测定体温,而预测型只需要不到 30 秒就能测定体温。预测型体温计究竟是利用什么样的原理来测量体温的呢?如字面意思所示,预测型体温计以测量开始时的体温变化为基础,通过微分法计算出 10 分钟后的体温。
当我们把电子体温计夹在腋下时,体温就会使安装在电子体温计尖端的传感器升温。通常情况下,冰冷的物体遇到温暖的物体时,温度会迅速上升,而常温的物体就算遇到温暖的物体,温度也很难上升。这是因为温度差不同,导热速度不同。
相反,我们也可以通过导热速度逆推出两个物体的温度差。电子体温计内置了用于解微分方程的程序,能够计算出传感器温度上升的速度,同时预测出10 分钟后人体的温度。
为了提高电子体温计的预测精确度,人们还做了其他努力,比如以过去实际测量到的大量数据为基础,根据统计学预测数值。因此预测型电子体温计的性能一直在不断提高。
其实积分法的历史比微分法更长,可以追溯到古希腊时代。计算三角形或者四边形等用直线围出的区域的面积并不算太难,但要计算用曲线围出的区域的面积可不简单。
于是古希腊数学家、物理学家阿基米德(前 287—前 212)发明了“穷竭法”。穷竭法是用无数小三角形填满曲线内侧,通过求三角形面积的总和,间接求出曲线围出的面积的方法。“将事物分成无限小的部分,然后全部相加”的思维方式是积分法的出发点。
后来大约过了 1800 年,德国天文学家约翰尼斯·开普勒(1571—1630)把阿基米德的思维方式应用到了天文学中。到了 17 世纪,伽利略·伽利雷的弟子卡瓦列里(1598—1647)发现“面”无限细分后会变成“线”,“立 体”无限细分后会变成“面”,于是提出了“卡瓦列里原理”。之后,又有众多数学家在前人的基础上发展出了积分法。
可是每一种计算方法都很麻烦,而且存在准确性欠佳的问题。而彻底解决这一问题的人,是在微分法之后继续研究积分法的牛顿,他发现此前被分别研究的微分法和积分法其实互为逆运算关系。这是数学史上的重大发现。
有了牛顿的发现,微分法和积分法被统一为微积分,“微积分学”也成为数学的一个分支领域。顺便一提,除了牛顿,还有一个人也发明了微积分,他就是德国哲学家、数学家戈特弗里德·威廉·莱布尼茨。他在 1675 年发明微积分,1684 年出版图书,比牛顿晚了 10 年。
由于牛顿信奉神秘主义,尽管他于 1665 年就发明了微分法,但直到约 40 年后的 1704 年,他才正式发表了这一发明。因此牛顿和莱布尼茨围绕是谁发明了微积分法展开了激烈的纷争。1699 年,牛顿的支持者诬陷莱布尼茨剽窃研究成果。
1713 年,英国皇家学会也承认是牛顿发明了微积分。1716年,莱布尼茨带着剽窃研究成果的嫌疑与世长辞。
03
“樱花开放的时间”可以用“积分法”预测
和微分法一样,现在积分法也成为很多领域不可或缺的方法。以我们熟悉的事情为例,比如一到春天,日本气象局就会公布“樱花开放的预测时间”,这种预测正是利用了积分法。
樱花开放的时间与气温密切相关,这是所有日本人都知道的事,不过大家知道“400 ℃法则”和“600 ℃法则” 吗? 400 ℃法则是指“从 2 月 1 日开始,每天的平均气温相加后达到 400 ℃时,樱花就会开放”,而 600 ℃法则是指“从 2 月 1 日开始,每天的最高气温相加后达到 600 ℃时,樱花就会开放”。
现在假设我们要依据 600 ℃法则来预测樱花开放的时间。首先,要从 2 月 1 日开始记录每天的最高气温。然后画图,纵轴表示最高气温,横轴表示日期。当下图的气温值累计达到 600 ℃时,就可以预测樱花将会开放的时间了。
将上页图中的气温值加起来相当于做积分。由于实际上樱花的开放还要受到除气温之外各种因素的影响,因此预测并没有这么简单,现在各家民间气象公司都会设计自己的计算公式,发布自己的樱花开放预测时间。
不过,各家公司基本上都会使用积分法。与樱花一样,蝉等昆虫出现的日期也可以根据超过一定温度(叫作“发育临界温度”)的累计天数计算,这叫作“有效积温”。当有效积温值超过某个固定值时,这些昆虫就会开始孵化或者羽化。看吧,就连樱花和昆虫也在做积分!
推荐阅读
《原来数学这么有用》
作者:[日] 鹤崎修功
译者:佟凡
“数学不是冰冷的公式,而是藏在生活里的魔法!”——从A4纸到樱花预测,从黄金比例到AI算法,带你发现数学的奇妙与实用,轻松掌握数学思维,改变你看世界的方式!
东京大学数学博士教你开启生活中的“数学外挂”!数学是生活的指南,是每天都能用上的超能力!