基于决策的黑箱攻击——Boundary Attack

一、引言

基于决策的黑箱攻击是对抗攻击的一大类,优点是不需要目标模型的任何信息,只需要知道目标模型对于给定输入样本的决策结果。本文主要介绍基于决策的黑箱攻击的开山之作——Boundary Attack,论文为:

Brendel W A R J. Decision-based adversarial attacks: reliable attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

二、算法介绍

图一

图1 算法的主要流程

图1显示了Boundary Attack生成对抗样本的主要流程。其中,ooo表示原始样本(图片),ηk\eta_kηk表示第kkk次迭代中生成的随机扰动,并且服从分布P(o^k−1)P(\hat o^{k-1})P(o^k1)。该算法最开始会生成一个初始的对抗样本o^0\hat o^{0}o^0,该样本服从均匀分布且目标模型对其分类错误。由于o^0\hat o^{0}o^0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值