一、引言
基于决策的黑箱攻击是对抗攻击的一大类,优点是不需要目标模型的任何信息,只需要知道目标模型对于给定输入样本的决策结果。本文主要介绍基于决策的黑箱攻击的开山之作——Boundary Attack,论文为:
Brendel W A R J. Decision-based adversarial attacks: reliable attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.
二、算法介绍
图1显示了Boundary Attack生成对抗样本的主要流程。其中,ooo表示原始样本(图片),ηk\eta_kηk表示第kkk次迭代中生成的随机扰动,并且服从分布P(o^k−1)P(\hat o^{k-1})P(o^k−1)。该算法最开始会生成一个初始的对抗样本o^0\hat o^{0}o^0,该样本服从均匀分布且目标模型对其分类错误。由于o^0\hat o^{0}o^0