100个python算法超详细讲解:农夫过河

本文详细介绍了如何使用Python编程解决经典的农夫过河问题,涉及到递归算法和状态存储,通过二维数组表示狼、羊、白菜和农夫的位置,并确保它们的安全。程序通过递归遍历所有可能的过河方案,最终输出所有可行的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【100个python算法超详细讲解】@谷哥技术

1.问题描述
一个农夫在河边带了一匹狼、一只羊和一棵白菜,他需要把这三样东西用
船带到河的对岸。然而,这艘船只能容下农夫本人和另外一样东西。如果农夫
不在场的话,狼会吃掉羊,羊也会吃掉白菜。请编程为农夫解决这个过河问
题。
2.问题分析
根据问题描述可知,该问题涉及的对象较多,而且运算步骤也较为复杂,
因此在使用Python语言实现时,首先需要将具体问题数字化。
由于整个过程的实现需要多步,而不同步骤中各个事物所处的位置不同,
因此可以定义一个二维数组(嵌套列表)来表示4个对象——狼(wolf)、羊
(goat)、白菜(cabbage)和农夫(farmer)。对于东岸和西岸,可以用east和
west表示,也可以用0和1来表示,以保证程序设计时的简便性。
题目要求给出农夫、狼、羊和白菜的过河步骤,没有对先后顺序进行约
束,这就需要给各个事物依次进行编号,然后依次试探,若试探成功,再进行
下一步试探。因此,解决该问题可以使用循环或者递归算法,以避免随机盲目
运算而且保证每种情况都可以试探到。
题目要求求出农夫带一只羊、一匹狼和一棵白菜过河的所有办法,所以依
次成功返回运算结果后,需要继续运算,直至求出所有结果,即给出农夫不同
的过河方案。
3.算法设计
本程序使用递归算法,为了方便将各个实例数字化,定义二维数组int a[N]
[4]存储每一步中各个事物所处的位置。二维数组的一维下标表示当前进行的步
骤,第二维下标可能的取值为0~3,在这里规定它与4种事物的具体对应关系
为:0——狼、1——羊、2——白菜、3——农夫。接着再将东岸和西岸数字
化,用0表示东岸,1表示西岸,该信息存储在二维数组的对应元素中。
初始情况下,当前步骤为0,此时狼、羊、白菜和农夫都在东岸,则使用a
数组来表示该状态为:

假设在第3步之后狼在东岸,羊在西岸,白菜在东岸,农夫在西岸,则该
步骤的存储状态为:

 

定义Step变量表示渡河的步骤,则成功渡河之后,a数组中的存储状态为:

 

因为成功渡河后,狼、羊、白菜和农夫都在河的西岸,因此有a[Step]
[0]+a[Step][1]+a[Step][2]+a[Step][3]=4。
题目中要求狼和羊、羊和白菜不能在一起,因此若有下述情况出现,则发
生错误,应返回操作。
a[Step][1]!=a[Step][3] and (a[Step][2]==a[Step][1] or a[Step][0]==a[Step][1])
程序采用递归算法,主程序结构如图8.3所示。

 

在程序实现时,除了定义a数组来存储每一步中各个对象所处的位置以
外,再定义一维数组b[N]来存储每一步中农夫是如何过河的。
程序中实现递归操作部分的核心代码为:

# 递归,从带第一种对象开始依次向下循环,同时限定递归的界限
for i in range(-1, 3):
b[Step] = i # 记录农夫渡河方式
a[Step+1] = a[Step][:] # 复制上一步状态,进行下一步移动
# 农夫过去或者回来
a[Step + 1][3] = 1 - a[Step + 1][3]
if i == -1:
search(Step + 1) # 进行第一步
elif a[Step][i] == a[Step][3]: # 若该物与农夫同岸,带回
a[Step + 1][i] = a[Step + 1][3] # 带回该物
search(Step + 1) # 进行下一步

 每次循环从-1到2依次代表农夫渡河时为一人、带狼、带羊、带白菜通过,
利用语句“b[Step]=i”分别记录每一步中农夫的渡河方式,语句“a[Step+1]
[i]=a[Step+1][3]”是利用赋值方式使该对象与农夫一同到对岸或者回到本岸。若
渡河成功,则依次输出渡河方式。“i<3”为递归操作的界限,若i=2时仍无符合
条件的方式,则渡河失败。
在递归的过程中每进行一步都需要判断条件以决定是否继续进行此次操
作,具体的判断代码为:

# 若该步骤能使各值均为1,则输出结果,进入回归步骤
if a[Step][0] + a[Step][1] + a[Step][2] + a[Step][3] == 4:
……
return

上面的的代码表示若当前步骤能使各值均为1,则渡河成功,输出结果,
进入回归步骤。
若当前步骤与以前的步骤相同,则返回操作,代码如下:

for i in range(Step):
if a[i] == a[Step]: # 若该步与以前步骤相同,则返回操作
return

若羊和农夫不在一块而狼和羊或者羊和白菜在一块,则返回操作,判断代
码如下:

若羊和农夫不在 起而狼和羊或者羊和白菜在 起 则返回操作
# 若羊和农夫不在一起而狼和羊或者羊和白菜在一起,则返回操作
if a[Step][1] != a[Step][3] and (a[Step][2] == a[Step][1] or a[Step][0] == a[Step][1]):
return

递归部分程序结构如图8.4所示。

 4.完整的程序

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @author : liuhefei
# @desc: 农夫过河
def search(Step):
# 若该步骤能使各值均为1,则输出结果,进入回归步骤
if a[Step][0] + a[Step][1] + a[Step][2] + a[Step][3] == 4:
for i in range(Step + 1): # 能够依次输出不同的方案
print('east:', end=' ')
if a[i][0] == 0:
print('wolf', end=' ')
if a[i][1] == 0:
print('goat', end=' ')
if a[i][2] == 0:
print('cabbage', end=' ')
if a[i][3] == 0:
print('farmer', end=' ')
if a[i][0] and a[i][1] and a[i][2] and a[i][3]:
print("none", end='')
print(end=' ')
print('west:', end=' ')
if a[i][0] == 1:
print("wolf", end=' ')
if a[i][1] == 1:
print('goat', end=' ')
if a[i][2] == 1:
print('cabbage', end=' ')
if a[i][3] == 1:
print('farmer', end=' ')
if not (a[i][0] or a[i][1] or a[i][2] or a[i][3]):
print('none', end='')
print('\n')
if i < Step:
print(' the %d time' % (i + 1))
if i>0 and i<Step:
if a[i][3] == 0: # 农夫在本岸
print(" -----> farmer ", end='')
print(name[b[i] + 1])
else: # 农夫在对岸
print(" <----- farmer ", end='')
print(name[b[i] + 1])
print('\n\n\n')
return
for i in range(Step):
if a[i] == a[Step]: # 若该步与以前的步骤相同,取消操作
return
# 若羊和农夫不在一起而狼和羊或者羊和白菜在一起,则取消操作
if a[Step][1] != a[Step][3] and (a[Step][2] == a[Step][1] or a[Step][0] == a[Step][1]):
return
# 递归,从带第一种对象开始依次向下循环,同时限定递归的界限
for i in range(-1, 3):
b[Step] = i # 记录农夫渡河的方式
a[Step+1] = a[Step][:] # 复制上一步的状态,进行下一步移动
a[Step + 1][3] = 1 - a[Step + 1][3] # 农夫过去或者回来
if i == -1:
search(Step + 1) # 进行第一步
elif a[Step][i] == a[Step][3]: # 若该物与农夫同岸,带回
a[Step + 1][i] = a[Step + 1][3] # 带回该物
search(Step + 1) # 进行下一步
if __name__ == '__main__':
N = 15
a = [[0] * 4 for i in range(N)]
b = [0] * N
name = [" ",
"and wolf",
"and goat",
"and cabbage"]
print(' 农夫过河问题,解决方案如下:\n')
search(0)

5.运行结果
在Pycharm下运行程序,结果如下:

E:\code\python\Interest-python\venv\Scripts\python.exe E:/code/python/
农夫过河问题,解决方案如下:
east: wolf goat cabbage farmer west: none
the 1 time
east: wolf cabbage west: goat farmer
the 2 time
<----- farmer
east: wolf cabbage farmer west: goat
the 3 time
-----> farmer and wolf
east: cabbage west: wolf goat farmer
the 4 time
<----- farmer and goat
east: goat cabbage farmer west: wolf
the 5 time
-----> farmer and cabbage
east: goat west: wolf cabbage farmer
the 6 time
<----- farmer
east: goat farmer west: wolf cabbage
the 7 time
-----> farmer and goat
east: none west: wolf goat cabbage farmer
east: wolf goat cabbage farmer west: none
the 1 time
east: wolf cabbage west: goat farmer
the 2 time
<----- farmer
east: wolf cabbage farmer west: goat
the 3 time
-----> farmer and cabbage
east: wolf west: goat cabbage farmer
the 4 time
<----- farmer and goat
east: wolf goat farmer west: cabbage
the 5 time
-----> farmer and wolf
east: goat west: wolf cabbage farmer
the 6 time
<----- farmer
east: goat farmer west: wolf cabbage
the 7 time
-----> farmer and goat
east: none west: wolf goat cabbage farmer

农夫过河的问题通常是一个经典的算法题目,它涉及到了动态规划在实际问题中的应用。假设农夫有一头牛,需要将它们都安全地从一岸运送到另一岸。问题是,船每次只能承载一个人和一头牛,但当一个人和牛都在一艘船上时,如果水位上涨,牛会把人淹死。因此,农夫必须保证任何时候都有足够的船员控制船只。 在 Python 中,我们可以用递归的方式来解决这个问题,定义一个函数来表示当前的状态(农夫、牛和哪边是安全的),然后考虑所有可行的移动,比如让农夫过去,让牛过去,或者两边都不动。最终找到一种状态转移策略,使得所有人都能安全到达对岸。 这是一个简单的示例代码: ```python def ferry_crossing(farmer, cow, left, right): if farmer and cow in (left, right): # 如果有农民和牛同时在一边,无法过河 return False elif not farmer and cow == left: # 如果只有牛在左边,农民可以过去接牛 return [farmer, cow] == [right, None] elif not cow and farmer in (left, right): # 如果只有农民在,他可以直接过去 return True # 分别尝试两种情况:农民过河或者牛过河 options = [ ferry_crossing(True, False, farmer, left), # 农民过河,留下牛 ferry_crossing(False, True, cow, left), # 牛过河,留下农民 ] # 检查两种情况是否可行,然后返回结果 for option in options: if option: # 可行,继续探索其他路径 return option + ferry_crossing(False, False, farmer, right) else: # 所有选项都不行,返回False return False # 初始化:农民在左岸,牛在右岸 solution = ferry_crossing(True, False, 'A', 'B') if solution: print("Solution found:", solution) # 输出如何过河的具体步骤 else: print("No solution.")
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lee达森

创作不易,感谢打赏!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值