POJ 3461 Oulipo

本文深入探讨了Karp-Rabin算法在解决一维字符串匹配问题中的应用,详细介绍了算法原理、实现过程及优化策略。通过实例演示,展示了如何高效地计算模式串的hash值,在扫描母串时快速定位目标字符串出现的位置,即使在长文本中也能迅速筛选出所需信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


链接:http://poj.org/problem?id=3461

题目:

Oulipo
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 21806 Accepted: 8694

Description

The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:

Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…

Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.

So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A''B''C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with the word W, a string over {'A''B''C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
  • One line with the text T, a string over {'A''B''C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.

Sample Input

3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN

Sample Output

1
3
0
解题思路:

这道题目是个一维字符串匹配问题,我们可以用高效的KMP算法来解,这里也可以用HASH的方法来做。Karp-Rabin算法,虽然这种算法效率不太高,但是易于扩展,扩展到二维或是三维时比较方便。这里概要介绍一下Karp-Rabin算法,算出模式串(长度为m)的hash值,在扫描母串时,算出每一段长度为m的子串的hash值,如果相等,再进一步比较是否字符串是否相同(对于一些问题,我们可以假设hash的结果比较分散,均匀,不存在未命中点,这样只需要比较hash值就可以了)。这里的p不能取得太小,不然会出问题,容易产生冲突。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int MAXN = 10005;
const int MAXM = 1000005;
const int M    = 1234 * 5678 + 1;
char strp[MAXN], strt[MAXM];

long long mod(long long a, long long b)
{
	if(a < 0) return (a % b + b) % b;
	return a % b;
}

int rabin_karp(char * p, char * q)
{
	int ret = 0, d = 37;
	long long hp = 0, ht = 0, k = 1;
	int n = strlen(p), m = strlen(q);
	for(int i = 0; i < n; i++)
	{
		hp = d * hp + p[i];
		if(hp > M) hp = hp % M;
		ht = d * ht + q[i];
		if(ht > M) ht = ht % M;
		k *= d;
		if(k > M) k = k % M;
	}
	ret += (hp == ht);
	for(int i = 0; i < m - n; i++)
	{
		ht = mod(d * ht - k * q[i] + q[n + i], M);
		ret += (hp == ht);
	}
	return ret;
}

int main()
{
	int t;
	scanf("%d", &t);
	getchar();
	while(t--)
	{
		gets(strp);
		gets(strt);
		printf("%d\n", rabin_karp(strp, strt));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值