T5 模型 VS CLIP 模型

CLIP模型包含文本和视觉Transformer,通过预训练使相似的图像和文本在向量空间中接近。它使用大量从互联网抓取的400M图像-文本对进行训练,区别于传统分类模型。同时提及了T5模型和其训练方法,如Transformer结构、破坏策略等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CLIP consists of two models, as discussed in more depth in the previous chapter. The version of CLIP we use here consists of a text transformer for encoding text embeddings and a vision transformer (ViT) for encoding image embeddings.

Both CLIP models are optimized during pretraining to align similar text and images in vector space. It does this by taking image-text pairs and pushing their output vectors nearer in vector space while separating the vectors of non-pairs.

It distinguishes itself from typical classification models for several reasons. First, OpenAI trained it on a huge dataset of 400M text-image pairs that were scraped from across the internet.

T5 模型:NLP Text-to-Text 预训练模型超大规模探索 - Andy Yang的文章 - 知乎 https://zhuanlan.zhihu.com/p/88438851

T5 模型,还有它的训练方法。

  • Transformer Encoder-Decoder 模型;
  • BERT-style 式的破坏方法;
  • Replace Span 的破坏策略;
  • 15 %的破坏比;
  • 3 的破坏时小段长度。

### CLIP-DQA 模型概述 CLIP-DQA 是一种结合了 CLIP 预训练模型和 DQA(Driving Question Answering)任务的多模态框架,旨在解决自动驾驶场景中的复杂问题。该模型通过融合视觉信息与自然语言处理的能力,在特定驾驶环境中提供更精准的风险目标定位、自车意图预测以及建议生成等功能[^1]。 #### 定义 CLIP-DQA 可以视为 CLIP 的延伸版本,专门针对自动驾驶领域设计。它继承了 CLIP 在图文匹配上的强大能力,并将其应用于动态交通环境的理解中。通过对 BDD-X 数据集或其他类似数据源的学习,CLIP-DQA 能够解析图像或视频片段并回答关于当前路况的具体问题。 --- #### 实现方式 CLIP-DQA 的核心架构由以下几个部分组成: 1. **特征提取模块** 使用预训练好的 CLIP 模型作为基础网络来提取输入图像或视频帧的高级语义特征。由于原始 CLIP 输入尺寸通常较小 (224×224),为了适应更高分辨率的需求,引入了一个额外的高分辨率分支来进行细节增强。 2. **跨模态对齐机制** 借助 CLIP 中已有的对比学习方法,将文本描述映射至同一嵌入空间内的视觉表示向量上完成初步关联建立。此过程有助于后续问答系统的理解准确性提升。 3. **问答推理引擎** 构建基于 Transformer 或其他序列建模技术的语言解码器负责接收来自上述两阶段产生的联合表征形式化表达式之后输出最终答案字符串。此外还加入了注意力机制使得模型可以更加关注那些对于解答当前提问至关重要的区域或者对象特性等方面的信息。 以下是简化版伪代码展示如何利用 CLIP 提取特征并与 QA 结合: ```python import clip from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM def extract_features(image_path): model, preprocess = clip.load("ViT-B/32") # 加载 CLIP 模型 image = preprocess(Image.open(image_path)).unsqueeze(0).to(device) with torch.no_grad(): features = model.encode_image(image) # 获取图片特征 return features.cpu().numpy() def generate_answer(question, visual_feature): tokenizer = AutoTokenizer.from_pretrained('t5-base') model = TFAutoModelForSeq2SeqLM.from_pretrained('t5-base') input_ids = tokenizer( f"question: {question} context: {visual_feature.tolist()}", return_tensors="tf" )["input_ids"] outputs = model.generate(input_ids=input_ids, max_length=50) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer ``` --- #### 应用场景 CLIP-DQA 主要适用于以下几种典型的应用场合: 1. **风险目标检测与分类** 自动驾驶汽车需要快速识别潜在危险因素,比如行人穿越马路、突然变道的车辆等。借助于 CLIP-DQA 对复杂场景的有效解读能力,能够显著提高此类事件发现效率及其可靠性水平。 2. **驾驶员辅助决策支持系统** 当面对复杂的交叉路口或是恶劣天气条件下的低能见度状况时,可以通过询问有关周围环境状态的问题获得即时反馈意见从而帮助司机做出合理判断动作。 3. **教育与培训工具开发** 利用真实世界采集回来的道路影像资料配合相应说明文字共同构成教学素材库供新手学员反复练习熟悉各种常见情形下的操作规范要点等内容。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值