人脸识别中主要算法的比较(待续)

本文比较了几种主流的人脸识别算法,包括PCA的特征脸和FisherFace算法,基于LBP算子的方法,利用HMM的模型,以及神经网络和支持向量机识别算法。PCA和FisherFace通过降维处理人脸图像,LBP则侧重局部特征,HMM及其变种展现鲁棒性,神经网络简化特征提取但训练复杂,SVM在小样本时表现良好但训练过程繁琐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基于PCA的识别算法

     主要有特征脸(Eigenface)算法和FisherFace算法。

       特征脸算法进行人脸识别的主要思想是将输入的人脸图像描述为“特征脸”的线性组合,不同的人脸特性用构成该种线性组合的系数来描述,其关键技术就是主成分分析----PCA。 人脸识别中用于描述人脸图像的向量维数都比较高,因此牛人就想到了用PCA进行降维。PCA算法简单有效,目前依然是人脸识别的流行算法之一,也是基准算法。

      FisherFace算法选取的特征空间是类内散布正交的矢量,使用该种特征脸空间可以弱化图像之间的识别信息无关的差异,不同人脸之间的差别得到突出,并弱化了表情,光照等因素的影响。

2、基于LBP算子的识别算法

3、基于隐马尔可夫模型的识别算法 --HMM

       在HMM基础上衍生的嵌入式隐马尔可夫模型EHMM和二维HMM对人脸识别有较高的识别率,鲁棒性较强,对让人脸表情,姿态的变化不敏感,对于人脸库的扩容性适应性好,新样本的加入不需要对所有样本进行重新训练,但是该算法实现比较复杂。

4、基于神经网络的识别算法

   &nbs

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值