1、基于PCA的识别算法
主要有特征脸(Eigenface)算法和FisherFace算法。
特征脸算法进行人脸识别的主要思想是将输入的人脸图像描述为“特征脸”的线性组合,不同的人脸特性用构成该种线性组合的系数来描述,其关键技术就是主成分分析----PCA。 人脸识别中用于描述人脸图像的向量维数都比较高,因此牛人就想到了用PCA进行降维。PCA算法简单有效,目前依然是人脸识别的流行算法之一,也是基准算法。
FisherFace算法选取的特征空间是类内散布正交的矢量,使用该种特征脸空间可以弱化图像之间的识别信息无关的差异,不同人脸之间的差别得到突出,并弱化了表情,光照等因素的影响。
2、基于LBP算子的识别算法
3、基于隐马尔可夫模型的识别算法 --HMM
在HMM基础上衍生的嵌入式隐马尔可夫模型EHMM和二维HMM对人脸识别有较高的识别率,鲁棒性较强,对让人脸表情,姿态的变化不敏感,对于人脸库的扩容性适应性好,新样本的加入不需要对所有样本进行重新训练,但是该算法实现比较复杂。
4、基于神经网络的识别算法
&nbs