- 博客(568)
- 资源 (5)
- 收藏
- 关注
原创 YOLOv8辅助驾驶系统全应用详解
本文详细介绍了基于YOLOv8的辅助驾驶系统(ADAS)的架构设计与实现。该系统整合了目标检测、语义分割等多种计算机视觉技术,包含目标检测、车道线检测、交通标志识别等核心模块,通过轨迹预测和行为分析实现风险评估与预警功能。系统采用自适应参数调节机制,可根据环境条件和车辆状态动态优化性能。文章提供了完整的代码实现,包括系统集成、模型训练工具及边缘计算优化方案,并配有配置文件示例和系统监控工具。该ADAS系统具有实时处理能力强、安全性能高等特点,为智能驾驶提供了可靠的环境感知解决方案。
2025-09-10 02:45:00
15
原创 YOLOv8辅助驾驶车道偏离预警系统详解
本文详细介绍了基于YOLOv8的车道偏离预警系统(LDWS)的实现方案。系统采用YOLOv8深度学习模型进行车道线检测,能够识别多种类型的车道线(实线、虚线等),并通过计算车辆与车道中心线的相对位置判断偏离情况。文章从基础实现到高级优化,依次讲解了车道线检测、偏离判断逻辑、实例分割、轨迹预测等关键技术模块,并提供了完整的系统集成方案和实时视频处理示例。系统具有高精度、实时性强等优势,可通过模型量化、多线程处理等技术进行优化部署,能有效提升驾驶安全性,具有重要的应用价值。
2025-09-09 11:06:32
11
原创 YOLOv8辅助驾驶交通标志识别优化与扩展
本文提出了一种基于YOLOv8的优化交通标志识别系统,通过模型量化、剪枝和蒸馏等技术实现轻量化,采用半精度计算和推理加速优化提升性能。系统扩展了多模态传感器融合、语义理解与上下文分析功能,能自适应不同环境条件并实时监控性能。实验表明,该方法在保持高精度的同时显著提升了检测速度,为辅助驾驶系统提供了更可靠的交通标志识别解决方案。
2025-09-09 10:33:15
12
原创 YOLOv8辅助驾驶交通标志识别详解
摘要:YOLOv8在辅助驾驶交通标志识别中展现出卓越性能。该系统采用单阶段检测架构,实现多尺度、高精度的实时检测,解决了光照变化、标志遮挡等挑战。文章详细介绍了从环境配置、基础检测到实时视频处理的全流程实现,包括自定义数据集训练、距离估算警告系统等关键功能。同时探讨了模型压缩、多线程处理等优化策略,以及边缘设备部署方案。YOLOv8凭借其高精度、实时性和易部署优势,为智能交通系统提供了可靠的技术支持。
2025-09-09 10:10:51
358
原创 YOLOv8 行人检测优化和扩展
本文提出了一种基于YOLOv8的上下文感知行人检测系统,重点优化了交叉路口和斑马线等关键区域的检测性能。系统通过场景识别模块自动区分普通道路、交叉路口和斑马线区域,并采用动态ROI管理和多尺度检测技术提升关键区域的检测灵敏度。创新性地融合了霍夫变换的斑马线检测和交通设施识别来辅助场景判断,同时实现行人距离估算和运动轨迹分析。实验表明,该系统能有效提高危险区域的行人检出率,降低漏检风险。此外,还设计了性能自适应机制,可根据硬件资源动态调整处理精度,确保实时性。该方案为智能驾驶系统提供了更可靠的行人感知能力。
2025-09-09 04:15:00
8
原创 YOLOv8 行人检测系统详解
摘要:YOLOv8行人检测系统是辅助驾驶的核心组件,通过深度学习实现实时多目标检测(行人/自行车/摩托车等)。系统具备距离估算、运动跟踪和威胁评估功能,采用相机参数和相似三角形原理计算实际距离,结合速度分析预测碰撞风险。代码实现包含基础检测器和高级版本(集成DeepSORT跟踪),支持实时预警和性能优化(模型轻量化/半精度推理)。该系统满足EuroNCAP等安全标准,能在复杂城市环境中有效识别交通参与者,为行车安全提供可靠保障。
2025-09-09 03:00:00
314
原创 预防投票机制被破解、反复投票和刷票的完整安全防护方案
本文提出了一套完整的投票系统安全防护方案,通过七层防护机制有效防止破解、重复投票和刷票行为。方案包括:1)多层身份验证(JWT+设备指纹);2)频率限制(IP/用户级别);3)CAPTCHA验证;4)数据库级防护(唯一约束);5)行为分析(检测异常模式);6)前端安全措施(防自动化);7)实时监控报警系统。该方案采用技术手段如加密令牌、速率限制、人机验证、事务处理等,确保投票活动的真实性、唯一性和公平性,同时具备异常检测和实时响应能力。
2025-09-08 16:48:45
9
原创 投票机制 说明
本文介绍了多种投票系统的实现机制,包括基础投票功能、防重复投票、多选投票、时间限制投票和权重投票等。前端采用JavaScript类实现投票逻辑和UI交互,后端提供Node.js/Express接口处理投票数据。防重复机制涵盖Cookie和用户身份验证两种方式,多选投票支持设置最大选项数,时间限制投票通过倒计时功能实现,权重投票则允许不同用户拥有不同投票权重。文章还提供了完整的投票系统示例代码,包含倒计时显示、结果可视化等功能模块,开发者可根据实际需求灵活组合使用这些机制。
2025-09-08 16:41:05
10
原创 隐藏下拉列表前三个值 和 后三个值 和 某个值
jQuery提供了多种方式隐藏下拉列表选项:1. 使用选择器隐藏前3项(:lt(3))和后3项(:nth-last-child(-n+3));2. 通过属性选择器隐藏特定值([value="x"]);3. 支持按ID或name定位下拉框。还可以禁用选项或完全移除,并提供了错误处理建议。最佳实践是封装成函数,支持同时隐藏多个特定值,确保代码可维护性。
2025-09-08 16:04:35
8
原创 各数据库系统的 CommandTimeout 最大值
本文总结了主流数据库(SQL Server/MySQL/PostgreSQL/Oracle)的CommandTimeout设置:最大值为int.MaxValue(约24.8天),默认30秒。建议根据业务需求合理设置超时值:简单查询30秒,批量操作5-30分钟,大数据处理1-2小时。可通过代码直接设置、TimeSpan转换或配置文件管理。避免使用0(无限等待),推荐使用30*60等明确表达式。同时区分连接超时和命令超时,建议通过动态设置或常量定义来提高可维护性。实际应用时应平衡性能与用户体验,避免过大超时值。
2025-09-08 15:58:03
7
原创 YOLOv8 FCW系统优化和扩展
本文提出了一种优化的前向碰撞预警(FCW)系统,通过多目标跟踪算法、多传感器数据融合和自适应参数调整等技术提升系统性能。系统采用匈牙利算法进行目标匹配,结合视觉和雷达数据估算距离,并根据天气、路况等环境因素动态调整预警阈值。此外,还介绍了模型压缩、分辨率调整等性能优化方法,实现多级别预警功能。实验表明,该系统在准确性、鲁棒性和适应性方面均有显著提升,能够有效应对不同驾驶环境下的碰撞预警需求。
2025-09-08 10:24:22
128
原创 YOLOv8 辅助驾驶 前向碰撞预警(FCW)
摘要:前向碰撞预警(FCW)系统基于YOLOv8目标检测技术实现,通过实时检测车辆、行人等障碍物,计算相对距离和速度,预测碰撞时间(TTC)并在危险时发出预警。系统核心包括YOLOv8检测、距离估算(基于相似三角形原理)、TTC计算三个模块,可根据实际需求调整预警阈值和相机参数。文章提供了完整的Python实现代码,包含基础版和优化版距离估算方法,并强调了实际部署时需考虑相机标定、多传感器融合及环境适应性等关键因素。
2025-09-08 10:21:51
12
原创 YOLOv8 道路安全监控扩展功能详解
YOLOv8道路安全监控系统扩展功能详解:系统在基础目标检测能力上集成了车牌识别(结合OCR技术实现字符识别)、行为分析(检测逆行/急停等异常行为)、事故检测(通过运动状态和位置关系识别碰撞)、天气适应(自动调整参数优化不同天气下的检测效果)四大核心模块。各模块采用独立类封装,可通过综合系统类实现功能集成,显著提升了在智能交通监控场景的应用价值。系统支持车辆身份识别、危险预警、事故自动报警等功能,并能在雨雾等复杂环境中保持稳定性能。
2025-09-05 10:00:59
23
原创 YOLOv8 道路安全监控
YOLOv8道路安全监控系统利用YOLOv8目标检测技术实现实时交通监控,可检测车辆、行人等目标并进行违规行为识别。系统支持多种模型尺寸(nano到x-large),基于COCO数据集预训练,提供车辆统计、行人计数等功能。代码实现包括模型加载、目标检测、结果可视化等核心模块,并支持违规检测、数据持久化等高级功能。系统可部署在边缘设备或云端,建议使用NVIDIA GPU加速,支持多线程处理和模型优化(如ONNX/TensorRT格式导出)。适用于智慧城市、交通管理等场景,可扩展车牌识别、行为分析等功能。
2025-09-05 09:56:05
25
原创 YOLOv8 智能交通信号控制
本文介绍了基于YOLOv8的智能交通信号控制系统,该系统通过实时检测车流量,动态调整信号灯时长以优化交通效率。系统核心功能包括:实时车流量检测、交通密度分析及信号灯时长优化。文章提供了完整的代码实现方案,涵盖模型加载、车流量统计、信号控制和可视化处理等模块。该系统具有实时响应、自适应调节、高精度检测等优势,适用于城市主干道、高速路口等多种场景,能有效提升路口通行效率,减少交通拥堵。
2025-09-04 11:24:18
26
原创 YOLOv8 性能优化详
YOLOv8性能优化摘要:本文详细介绍了YOLOv8目标检测模型的性能优化方法,包括:1) 模型选择策略,根据硬件配置自动推荐最优模型;2) GPU加速技术,展示CPU与GPU推理速度对比;3) 精度与速度平衡方案,实现动态参数调整;4) 多线程与异步处理优化,提高视频流处理效率;5) 综合优化示例,包含半精度推理和动态性能调整。通过代码示例演示了批量推理、自适应参数调整等关键技术,帮助开发者在不同硬件条件下实现最佳性能表现。这些优化策略可显著提升YOLOv8的推理速度,同时保持较高的检测精度。
2025-09-03 09:54:58
693
原创 YOLOv8 违章行为检测
YOLOv8违规行为检测技术摘要:YOLOv8作为新一代实时目标检测模型,在违规行为检测领域展现出卓越性能。本文介绍了基于YOLOv8的三种实现方案:1)基础图像检测,2)视频流实时检测,3)自定义违规行为识别系统。解决方案涵盖交通违规、工地安全等场景,提供从模型加载、推理到自定义训练的完整流程。特别强调了数据集准备、性能优化等关键技术点,通过调整置信度阈值和采用GPU加速实现精度与速度的平衡。该技术可广泛应用于智能监控、公共安全等领域,为违规行为自动识别提供高效解决方案。
2025-09-03 09:38:29
24
原创 YOLOv8 交通流量监测功能扩展
本文介绍了基于YOLOv8的交通流量监测系统三个扩展功能:1)车速估算功能,通过车辆连续帧位移计算实时速度并支持超速检测;2)车辆密度分析,统计特定区域车辆数量评估交通拥堵程度;3)异常事件检测,识别停车、逆行、碰撞等异常情况。系统采用多线程处理框架,集成轨迹跟踪、区域分析和行为模式识别算法,可为交通管理提供全面的实时监测数据。这些扩展功能显著提升了基础交通流量监测系统的实用价值,有助于及时发现和处理交通问题,提高道路安全与通行效率。
2025-09-02 16:51:43
156
原创 YOLOv8 交通流量监测详解
本文介绍了一个基于YOLOv8的交通流量监测系统,该系统通过深度学习技术实现车辆实时检测、跟踪和分类。系统核心功能包括:1)使用YOLOv8模型检测道路车辆并进行持续跟踪;2)按方向和车型统计车流量;3)支持多区域流量监测和数据可视化。文章提供了完整的代码实现示例,涵盖基础车辆检测、视频流处理和高级数据分析功能。系统还可进一步优化性能,如使用轻量级模型、GPU加速等,并建议扩展车速估算、密度分析等功能。该方案为交通管理提供了有效的实时监测和决策支持工具。
2025-09-02 16:34:39
157
原创 SqlBulkCopy 详细说明(大量数据插入提升插入数据的速度)
SqlBulkCopy是.NET中高效批量导入数据到SQL Server的工具。它通过批处理大幅提升性能,支持DataTable、DataReader等多种数据源,提供列映射、事务集成等功能。主要用法包括:1)基本用法设置目标表和列映射;2)通过BatchSize控制批处理量;3)结合事务确保一致性;4)使用NotifyAfter实现进度通知。使用时需注意:合理设置批次大小,确保资源释放,进行错误处理。典型场景包括大数据迁移、ETL等需要高效数据导入的操作。
2025-08-28 10:11:19
87
原创 jQuery Radio 和 Checkbox 操作详解
本文详细介绍了使用jQuery操作Radio和Checkbox的方法。主要内容包括:1) Radio的赋值、判断选中状态及设置选中/取消选中;2) Checkbox的赋值、获取选中值及全选/反选操作;3) 提供了完整的HTML示例代码;4) 分析了Radio和Checkbox的本质区别及操作差异;5) 对比了prop()和attr()方法的优劣,并给出最佳实践建议:优先使用prop()方法,注意Radio的组概念,优化批量操作性能,推荐将常用操作封装为函数以提高代码复用性。
2025-08-22 17:44:01
68
原创 YOLOv8自动驾驶系统 —— 距离估算 详细讲解和代码示例
本文详细介绍了基于YOLOv8的自动驾驶系统距离估算方法,主要包括三种核心算法:基于物体尺寸的相似三角形原理计算、基于地面平面假设的几何推导,以及基于深度学习的直接预测。系统通过相机标定获取内参和外参,利用多方法融合策略提高鲁棒性,并量化估算不确定性。关键技术包括精确的相机标定、实时处理优化和多传感器数据融合。该距离估算模块为自动驾驶提供了准确的障碍物距离感知,有效支持碰撞预警、路径规划等关键功能。实验结果表明,综合多种方法能显著提升距离估算的准确性和可靠性。
2025-08-17 00:15:00
31
原创 YOLOv8自动驾驶系统 —— 实时性优化 详细讲解和代码示例
本文详细介绍了YOLOv8自动驾驶系统的实时性优化策略。通过算法优化(使用Numba JIT编译加速数值计算)、并行处理(多线程批量处理目标)、内存管理(对象池和预分配内存)以及系统级优化(动态性能监控和资源调整)四大关键技术,显著提升了系统的处理速度和响应能力。文章提供了Python实现代码,包括高效的轨迹预测算法、并行目标处理器和优化的数据结构,确保在自动驾驶场景中满足严格的实时性要求,实现30FPS以上的稳定处理性能。
2025-08-16 04:45:00
42
原创 YOLOv8自动驾驶系统 —— 不确定性处理 详细讲解和代码示例
本文介绍了YOLOv8自动驾驶系统中的不确定性处理方法。系统通过概率模型(高斯分布、粒子滤波等)处理传感器噪声、模型误差等不确定性来源,实现目标检测和跟踪。关键技术包括:1) 基于高斯分布的不确定性表示与传播;2) 传感器噪声建模与多源信息融合;3) 粒子滤波处理非高斯不确定性;4) 完整的不确定性感知跟踪系统实现。系统通过量化不确定性支持风险评估和自适应决策,提高了自动驾驶的安全性和鲁棒性。实验验证了该方法在目标跟踪中的有效性,能在复杂环境下保持稳定性能。
2025-08-15 04:15:00
34
原创 YOLOv8自动驾驶系统 —— 运动模型 详细讲解和代码示例
本文详细介绍了自动驾驶系统中常用的三种运动模型:匀速模型、恒定加速度模型和转向模型。匀速模型适用于直线匀速场景,恒定加速度模型处理加速/减速情况,转向模型则能精确预测转弯行为。文章通过Python代码展示了各模型的实现细节,包括状态转移矩阵、观测矩阵和卡尔曼滤波的应用。同时提出了运动模型选择器,能根据目标行为特征自动选择最优模型。这些模型为自动驾驶系统提供了灵活准确的目标运动预测能力,有效支持了多目标跟踪和行为预测任务。
2025-08-14 05:45:00
32
原创 radio样式作成和checkbox一样,支持选中和选中取消
本文介绍了四种实现类似复选框样式的单选框组件方案。方案一通过纯CSS修改radio样式为方形,添加勾选标记;方案二在方案一基础上加入JavaScript,实现点击已选radio可取消功能;方案三使用复选框模拟单选框的分组行为;方案四封装为可复用的ToggleableRadioGroup类。所有方案均保持视觉一致性,支持选中/取消选中功能,其中方案二和四保留原生radio分组特性,方案三则用checkbox模拟单选行为。开发者可根据项目需求选择不同实现方式,平衡功能与兼容性。
2025-08-13 15:52:42
39
原创 YOLOv8自动驾驶系统 —— 置信度管理 详细讲解和代码示例
本文详细介绍了YOLOv8自动驾驶系统中的置信度管理机制。该系统通过动态调整跟踪器置信度(0-1范围)来提升多目标跟踪的可靠性,包含置信度增强(成功匹配时)和衰减(丢失目标时)两种核心机制。实现方案包括基础跟踪器类、自适应置信度管理器和完整跟踪系统三个层次,采用IOU匹配和匈牙利算法进行目标关联,并可视化不同置信度的跟踪结果。关键优势在于提高遮挡处理能力、优化资源分配效率,以及为决策系统提供可信度评估。测试表明,该系统能有效应对复杂交通环境中的目标跟踪挑战,通过置信度阈值和自适应参数确保跟踪质量。
2025-08-13 04:45:00
31
原创 YOLOv8自动驾驶系统 —— 匈牙利算法 详细讲解和代码示例
匈牙利算法(Hungarian Algorithm)是一种解决分配问题的经典算法,用于在多项式时间内找到二分图的最优匹配。在自动驾驶的多目标跟踪系统中,匈牙利算法用于将当前帧的检测结果与已有轨迹进行最优匹配。
2025-08-12 03:45:00
406
原创 jQuery 根据八组数据制作条形图和饼状图
本文介绍如何使用jQuery和Chart.js创建包含8组数据的可视化图表。通过HTML、CSS和JavaScript代码实现,主要包含以下功能:1) 数据表格展示具体数值和百分比;2) 条形图用不同颜色柱子显示数据;3) 饼状图直观展示数据占比。系统采用响应式设计,支持鼠标悬停显示详细信息,图表与表格数据同步更新。实现特点包括现代化UI设计、清晰的视觉层次以及高度可定制性,用户可自由修改数据标签、数值和颜色方案。该方案基于Chart.js图表库,适合创建专业的数据可视化展示。
2025-08-11 14:07:08
36
原创 YOLOv8自动驾驶系统 —— 数据关联 详细讲解和代码示例
本文详细介绍了YOLOv8自动驾驶系统中的数据关联技术。数据关联作为多目标跟踪的核心组件,负责将当前帧检测结果与已有轨迹匹配,实现目标持续跟踪。系统面临遮挡、检测失败、相似外观和快速运动等挑战。文章展示了基于距离的关联算法实现,包括IOU和欧氏距离计算、匈牙利算法匹配,以及跟踪器类实现。同时介绍了完整的多目标跟踪系统架构,包含预测、关联、更新和删除机制。最后提出了处理遮挡和检测失败的高级策略,如置信度管理和历史轨迹利用。该系统能有效应对自动驾驶复杂场景,为后续决策提供可靠数据基础。
2025-08-11 10:04:20
152
原创 YOLOv8自动驾驶系统 —— 行为预测 详细讲解和代码示例
本文详细介绍了基于YOLOv8的自动驾驶行为预测系统。该系统通过YOLOv8实现目标检测和跟踪,结合三种预测方法:基于轨迹历史分析、卡尔曼滤波预测以及完整的预测系统实现。系统能够预测车辆、行人等交通参与者的未来运动轨迹和模式(直线、转弯等),为自动驾驶决策提供关键信息。文章包含完整的Python代码实现,涵盖了数据关联、运动模型、不确定性处理等关键技术点,并讨论了前向碰撞预警、车道变换预测等实际应用场景。该系统通过整合YOLOv8检测能力和预测算法,有效提升了自动驾驶环境感知能力。
2025-08-11 09:52:43
369
原创 鼠标经过第一列的td时,把html字符串的内容显示在alt浮动窗口上
本文介绍了四种在鼠标经过表格单元格时显示HTML内容的浮动窗口实现方法: 自定义浮动窗口:动态创建带样式的div元素,跟随鼠标移动 使用title属性:提取HTML中的纯文本作为提示 专用alt样式窗口:模拟传统alt效果,具有黄色背景和简洁样式 增强ko-tooltip:基于现有功能扩展HTML显示 所有方案都包含鼠标事件处理(mouseover/mousemove/mouseout),其中方法三最接近原生alt效果,提供最佳视觉一致性。可根据项目需求选择适合的实现方式。
2025-08-05 16:24:24
222
原创 YOLOv8自动驾驶系统 —— 辅助驾驶功能: 车道保持辅助 详细说明及代码示例和完整代码
YOLOv8自动驾驶车道保持辅助系统摘要 基于YOLOv8的车道保持辅助系统(LKA)通过多模块协同实现精准车道保持。系统采用鲁棒的车道检测算法,结合HSV颜色空间分析和霍夫变换,有效识别各类车道线。通过二次多项式拟合和历史数据平滑处理优化检测结果,车辆定位模块精确计算横向偏移(精度±0.02米)和航向角误差。双输入PID控制器整合横向偏移和航向误差,输出平滑转向指令(响应时间<100ms)。系统包含五级状态机(待机/激活/警告/干预/人工接管),当横向偏移超过0.5米时触发警告,0.8米时自动干预。
2025-08-04 02:30:00
139
原创 YOLOv8自动驾驶系统 —— 辅助驾驶功能: 自动紧急制动 详细说明及代码示例和完整代码
基于YOLOv8的自动驾驶AEB系统通过多传感器融合(视觉+雷达)实现高精度障碍物检测与距离估计,结合TTC(碰撞时间)算法动态评估威胁等级,采用分级制动策略确保紧急情况下的可靠响应。系统核心模块包括:传感器数据融合、实时决策(响应时间<100ms)、防误触发机制及平滑制动控制,同时集成可视化界面与性能监控功能。测试表明,该系统能在复杂场景下准确识别碰撞风险,平衡安全性与舒适性,为自动驾驶提供关键安全保障。关键技术涵盖深度学习检测、实时决策算法及多模态传感器协同。
2025-08-03 03:30:00
40
原创 YOLOv8自动驾驶系统 —— 辅助驾驶功能: 自适应巡航控制 详细说明及代码示例和完整代码
本文提出了一种基于YOLOv8的自动驾驶自适应巡航控制系统(ACC)解决方案。系统采用分层架构设计,包含目标检测跟踪、状态管理、距离控制、速度控制等模块。关键技术包括:1)使用YOLOv8实现高精度车辆检测;2)基于PID控制器的距离和速度调节算法;3)多状态切换机制支持跟车、巡航等模式;4)实时视觉反馈界面。系统通过Python实现,测试表明能有效处理20Hz控制频率,具备紧急制动、驾驶员干预等安全机制。相比传统方法,该系统在目标识别精度和控制响应速度方面具有优势,为自动驾驶提供了可靠的自适应巡航功能。
2025-08-02 02:45:00
38
原创 C# web.net 画面选择csv文件,通过js把文件file传给后台,在后台用io包读取文件信息
本文介绍了在C# ASP.NET中实现CSV文件上传与读取的方法。主要包括:1)前端使用HTML文件控件和JavaScript Fetch API上传文件;2)后端通过IFormFile接收文件,使用StreamReader逐行解析CSV数据;3)推荐使用CsvHelper库进行专业处理。文章提供了完整的代码示例,包括异常处理和数据返回,实现了无需保存文件即可直接读取CSV内容的功能。
2025-08-01 15:32:30
325
原创 YOLOv8 自动驾驶系统 —— 交通违规检测: 获取或创建合适的训练数据集
本文详细介绍了交通违规检测训练数据集的获取与创建方法。主要内容包括:1)利用公开数据集(如BDD100K、KITTI等)的方法和代码示例;2)自建数据集的采集策略与标注流程;3)数据增强技术的实现;4)数据集划分与验证方法;5)数据质量检查工具;6)统计分析与可视化技术。文章强调应结合公开数据集与自采数据,通过专业标注、数据增强和严格验证来构建高质量数据集,并建议从公开数据集入手逐步扩展专用数据集。
2025-08-01 12:34:54
127
原创 YOLOv8 自动驾驶系统 交通违规检测 详细说明 和代码示例 和数据集
本文介绍了一种基于YOLOv8的自动驾驶交通违规检测系统。系统能够实时识别多种交通违规行为,包括闯红灯、超速、违规停车等。核心架构采用YOLOv8作为检测模型,结合OpenCV进行视频处理。文章提供了完整的代码实现,包括基础检测类、特定违规行为检测方法和数据集准备方案。系统支持视频文件输入和结果保存,并可通过跳帧等策略优化性能。数据集建议采用BDD100K等公开数据集或自建标注数据,并给出了YOLO格式标注规范。该系统框架具有可扩展性,可根据实际需求进行功能扩展和性能优化,为智能交通管理提供了有效解决方案。
2025-08-01 12:29:01
36
原创 YOLOv8自动驾驶系统 —— 自动紧急制动(AEB) 详细说明及代码示例和完整代码
本文提出了一种基于YOLOv8的自动驾驶AEB系统解决方案,针对实时性、距离估计精度和误报控制等关键技术挑战,设计了完整的系统架构。系统采用多传感器融合技术,结合视觉和雷达数据提高可靠性;通过实时计算TTC值评估碰撞风险,采用分级制动策略确保安全性和舒适性;设计了抗干扰的触发机制防止误操作。系统包含传感器融合、决策控制、性能监控等核心模块,支持实时处理与可视化反馈。测试结果表明,该系统能在100ms内完成检测决策,准确识别碰撞风险并执行适当制动。该方案有效提升了自动驾驶车辆在复杂场景下的主动安全性能。
2025-08-01 04:15:00
52
原创 YOLOv8自动驾驶系统 —— 动态障碍物避让(车辆/行人) 详细说明及代码示例和完整代码
本文提出了一种基于YOLOv8的自动驾驶系统动态障碍物避让解决方案。针对车辆和行人等多类动态障碍物,系统整合了目标检测、跟踪、运动预测和避让决策等关键技术模块。通过数据增强策略提升模型鲁棒性,采用卡尔曼滤波实现多目标稳定跟踪,结合运动轨迹预测计算碰撞风险,最终根据威胁等级制定避让策略。实验证明,该系统能够实时处理复杂交通场景,有效预测障碍物运动轨迹,并生成合理的避让路径规划,为自动驾驶安全行驶提供可靠保障。
2025-07-31 23:15:00
36
YOLOv8 源代码(Ultralytics 8.3.146 引入了对灰度对象检测工作流程的全面支持,其中突出表现为新的 COCO8-Grayscale 数据集、专用的灰度 YOLO11n 模型以及)
2025-05-29
YOLOv8源代码和资源的详细整理(含:编译好的依赖项、预训练权重(第三方整理资源))
2025-05-29
《C# 入门经典》本书以循序渐进的方式讲解C#语言的基础知识、高级特性和实际应用
2025-03-24
Navicat下载文件 Navicat 是一款广泛使用的数据库管理工具,支持多种数据库系统
2025-03-07
超级好用的比较工具,版本2.16.8 64位
2025-01-24
Postman安装文件 64位 版本7.13
2025-01-24
sakura 编辑器 版本2-2-0-1
2025-01-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人