YOLOv8自动驾驶系统 —— 行为预测 详细讲解和代码示例

YOLOv8自动驾驶系统行为预测详解

行为预测概述

行为预测是自动驾驶系统中的关键组件,用于预测周围交通参与者(车辆、行人、骑行者等)未来的运动状态,为路径规划和决策提供依据。

YOLOv8在行为预测中的作用

YOLOv8作为感知系统的一部分,提供以下基础信息用于行为预测:

  • 目标检测和跟踪
  • 目标类别识别
  • 目标位置和速度估计
  • 目标尺寸和方向信息

行为预测方法

1. 基于轨迹的历史分析

python

import numpy as np
from collections import deque
import cv2

class TrajectoryPredictor:
    def __init__(self, max_history=10):
        """
        轨迹预测器,基于历史轨迹预测未来位置
        """
        self.max_history = max_history
        self.trajectories = {}  # 存储每个目标的历史轨迹
    
    def update_trajectory(self, track_id, bbox):
        """
        更新目标轨迹
        :param track_id: 目标ID
        :param bbox: 边界框 [x, y, w, h]
        """
        if tra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路飞VS草帽

感谢支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值