YOLOv8自动驾驶系统行为预测详解
行为预测概述
行为预测是自动驾驶系统中的关键组件,用于预测周围交通参与者(车辆、行人、骑行者等)未来的运动状态,为路径规划和决策提供依据。
YOLOv8在行为预测中的作用
YOLOv8作为感知系统的一部分,提供以下基础信息用于行为预测:
- 目标检测和跟踪
- 目标类别识别
- 目标位置和速度估计
- 目标尺寸和方向信息
行为预测方法
1. 基于轨迹的历史分析
python
import numpy as np
from collections import deque
import cv2
class TrajectoryPredictor:
def __init__(self, max_history=10):
"""
轨迹预测器,基于历史轨迹预测未来位置
"""
self.max_history = max_history
self.trajectories = {} # 存储每个目标的历史轨迹
def update_trajectory(self, track_id, bbox):
"""
更新目标轨迹
:param track_id: 目标ID
:param bbox: 边界框 [x, y, w, h]
"""
if tra