
大数据
文章平均质量分 77
路飞VS草帽
在绝望中寻找希望,人生终将辉煌!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大数据处理之 2. 数据处理流程 ——(4) 数据分析 详细说明及代码示例
数据分析是挖掘大数据价值的核心环节,本文系统介绍了多种数据分析方法及其代码实现。主要内容包括:1)统计分析技术,涵盖描述性统计、相关性分析和异常检测;2)时间序列分析,涉及趋势分解、ARIMA和指数平滑预测;3)机器学习方法,包括分类模型评估和聚类分析;4)关联规则挖掘的Apriori算法实现。文章提供了完整的Python代码示例,展示了从数据预处理到模型评估的全流程,并包含可视化组件。这些技术可应用于业务分析、用户行为研究和市场预测等场景,帮助从海量数据中提取有价值的商业洞察。原创 2025-07-30 10:01:51 · 29 阅读 · 0 评论 -
大数据处理之 2. 数据处理流程 ——(3) 计算处理 详细说明及代码示例
大数据计算处理技术综述 本文概述了大数据处理的核心计算技术,包括批处理、流处理、交互式查询和图计算四种主要模式。重点介绍了Apache Spark和Flink两大主流计算框架,提供了多语言代码示例展示各类数据处理场景的实现方法。文章还详细阐述了计算处理优化策略,如Spark性能调优、Flink状态管理优化以及动态资源分配等技术,帮助开发者应对海量数据处理中的性能挑战。通过合理选择计算引擎和优化资源配置,可以显著提升数据处理的效率和性能。原创 2025-07-30 09:03:10 · 23 阅读 · 0 评论 -
大数据处理之 2. 数据处理流程 ——(2) 数据存储 详细说明
本文介绍了大数据处理中的数据存储技术和实现方法。主要内容包括:1.大数据存储概述,分析海量数据存储面临的挑战;2.主流存储技术详解,提供HDFS、HBase、Iceberg等分布式存储系统的Java/Python代码示例;3.存储架构模式,展示分层存储和数据湖分区的实现方案;4.存储优化策略,比较不同数据压缩算法的性能。文章通过具体代码演示了大数据存储的实际操作,为构建高效可靠的大数据存储系统提供了技术参考。原创 2025-07-30 01:00:00 · 25 阅读 · 0 评论 -
大数据处理之 2. 数据处理流程 ——(1) 数据采集 详细说明
本文介绍了大数据处理中的数据采集技术,包括日志采集工具(Flume、Filebeat)、消息队列系统(Kafka)、数据库同步工具(Sqoop、Debezium)等,并提供了详细的配置示例和代码实现。文章阐述了数据采集的核心目标:确保数据完整性、准确性和及时性,支持高吞吐量传输和异构数据源接入。同时介绍了中心化采集架构和最佳实践,如错误重试机制、数据质量监控等,为大数据处理奠定基础。原创 2025-07-29 17:36:12 · 19 阅读 · 0 评论 -
大数据处理之 1. 核心技术栈 ——(3) 分析层 详细说明
大数据分析层核心技术解析:涵盖批处理、流式、机器学习等多种分析能力。核心包括SQL引擎(如SparkSQL)、实时计算(如FlinkSQL)和机器学习平台,通过查询加速(物化视图、缓存)和优化技术提升性能。典型应用如用户行为分析和实时风控,趋势包括LLM增强分析、实时机器学习和多云架构。建议根据场景选择合适技术栈,如Hive/Presto传统BI、FlinkSQL实时分析等。原创 2025-07-16 11:11:44 · 35 阅读 · 0 评论 -
大数据处理之 1. 核心技术栈 ——(2) 计算层 详细说明
大数据计算层核心技术详解,涵盖批处理(Spark)、流计算(Flink)、交互查询(Presto)等主要计算模式。核心框架解析包括Spark的内存计算与DAG优化、Flink的流批一体架构及状态管理、Presto的MPP向量化执行。通过配置调优、数据倾斜处理等实战方案提升性能,并指出流批一体、云原生和智能优化等演进趋势。建议根据场景需求选择计算框架,实时场景用Flink,离线分析选Spark,即席查询采用Presto/ClickHouse,混合场景可组合使用Flink+Spark架构。原创 2025-07-16 09:45:18 · 19 阅读 · 0 评论 -
大数据处理之 1. 核心技术栈 ——(1) 存储层 详细说明
大数据存储技术详解:存储层是数据处理体系的基础,直接影响数据可靠性、性能和扩展性。主流技术包括:1)分布式文件系统(HDFS)采用分块存储和副本机制;2)云对象存储(S3)提供扁平化命名空间;3)列式数据库(HBase)基于LSMTree结构优化读写;4)表格式存储(Iceberg)支持ACID和版本控制。选型需考虑一致性、延迟和规模需求,可通过参数调优提升性能。新兴技术如ZNSSSD、持久内存存储等进一步优化存储效率。建议通过实际测试验证技术选型。原创 2025-07-16 04:15:00 · 36 阅读 · 0 评论 -
大数据处理详细说明
大数据处理涵盖数据采集、存储、计算、分析和应用等环节,采用分层技术架构:存储层(HDFS/HBase等)、计算层(Spark/Flink等)和分析层(ML/AI工具)。典型处理流程包括数据采集、存储、计算和分析四个阶段,架构模式主要有Lambda(批流一体)和Kappa(纯流式)架构,以及新兴的数据湖架构。优化策略涉及存储格式、计算资源调度和查询加速等。实际应用需根据数据规模、延迟需求选择合适技术组合,并持续优化性能。核心在于通过合理的技术选型和架构设计,实现高效的大数据处理与分析。原创 2025-07-14 08:45:00 · 689 阅读 · 0 评论