表结构设计,只是我们业务的第一步,要想发挥MySQL的性能优势,索引设计也是必不可少的。正确的索引设计,业务才能达到上线的初步标准。
一、索引是什么?
相信大家在面试时,通常会被问到“什么是索引?”而你一定要能脱口而出:索引是提升查询速度的一种数据结构。
索引之所以能提升查询速度,在于它在插入时对数据进行了排序(显而易见,它的缺点是影响插入或者更新的性能)。
所以,索引是一门排序的艺术,有效地设计并创建索引,会提升数据库系统的整体性能。在目前的 MySQL 8.0 版本中,InnoDB 存储引擎支持的索引有 B+ 树索引、全文索引、R 树索引。
二、B+树索引结构
B+ 树索引是数据库系统中最为常见的一种索引数据结构,几乎所有的关系型数据库都支持它。
那为什么关系型数据库都热衷支持 B+树索引呢?因为它是目前为止排序最有效率的数据结构。像二叉树,哈希索引、红黑树、SkipList,在海量数据基于磁盘存储效率方面远不如 B+ 树索引高效。
所以,上述的数据结构一般仅用于内存对象,基于磁盘的数据排序与存储,最有效的依然是 B+ 树索引。
B+树索引的特点是: 基于磁盘的平衡树,但树非常矮,通常为 3~4 层,能存放千万到上亿的排序数据。树矮意味着访问效率高,从千万或上亿数据里查询一条数据,只用 3、4 次 I/O。
又因为现在的固态硬盘每秒能执行至少 10000 次 I/O ,所以查询一条数据,哪怕全部在磁盘上,也只需要 0.003 ~ 0.004 秒。另外,因为 B+ 树矮,在做排序时,也只需要比较 3~4 次就能定位数据需要插入的位置,排序效率非常不错。
B+ 树索引由根节点(root node)、中间节点(non leaf node)、叶子节点(leaf node)组成,其中叶子节点存放所有排序后的数据。当然也存在一种比较特殊的情况,比如高度为 1 的B+ 树索引。
所有 B+ 树都是从高度为 1 的树开始,然后根据数据的插入,慢慢增加树的高度。索引是对记录进行排序, 高度为 1 的 B+ 树索引中,存放的记录都已经排序好了,若要在一个叶子节点内再进行查询,只进行二叉查找,就能快速定位数据。
随着插入 B+ 树索引的记录变多,1个页(16K)无法存放这么多数据,所以会发生 B+ 树的分裂,B+ 树的高度变为 2,当 B+ 树的高度大于等于 2 时,根节点和中间节点存放的是索引键对,由(索引键、指针)组成。
那一个高度为 2 的 B+ 树索引,理论上最多能存放多少行记录呢?
在 MySQL InnoDB 存储引擎中,一个页的大小为 16K,在表 User 中,键值 userId 是BIGINT 类型,则:
根节点能最多存放以下多个键值对 = 16K / 键值对大小(8+6) ≈ 1100
再假设表 User 中,每条记录的大小为 500 字节,则:
叶子节点能存放的最多记录为 = 16K / 每条记录大小 ≈ 32
综上所述,树高度为 2 的 B+ 树索引,最多能存放的记录数为:
总记录数 = 1100 * 32 = 35,200
也就是说,35200 条记录排序后,生成的 B+ 树索引高度为 2。在 35200 条记录中根据索引键查询一条记录只需要查询 2 个页,一个根叶,一个叶子节点,就能定位到记录所在的页。
我们可以通过命令 EXPLAIN 查看是否使用索引:
mysql> EXPLAIN