- 博客(30)
- 资源 (1)
- 收藏
- 关注
原创 支持向量回归(SVR):用“少数关键样本”搞定非线性回归,连SVM都要给它点赞!
摘要:支持向量回归(SVR)是一种处理非线性、高维回归问题的强大工具。其核心思想是通过ε-管道允许预测误差,仅关注关键样本(支持向量)构建模型,既避免过拟合又提升效率。SVR利用核技巧(如RBF核)将非线性关系映射到高维空间处理,通过优化目标函数平衡管道宽度与误差惩罚。代码示例展示了SVR拟合正弦曲线数据的过程,可视化结果证实了其在保留关键特征的同时对噪声的鲁棒性。相比传统回归方法,SVR通过支持向量机制和核函数实现了对复杂数据的高效建模。(149字)
2025-08-11 11:30:00
463
原创 多项式回归:当线性模型“跑不动”时,给特征“升个级”就能搞定非线性数据!
文章摘要: 多项式回归通过给特征添加高次项(如x²、x³),使线性模型能够拟合非线性数据。当线性回归无法描述弯曲关系(如抛物线、S型曲线)时,多项式回归通过扩展特征(如[x, x²])并利用线性回归方法求解参数,实现曲线拟合。文中通过二次函数数据演示了完整流程:特征扩展→模型训练→评估→可视化,并对比了线性与多项式回归的效果差异。关键点包括:模型参数求解(最小二乘法)、评估指标(RMSE、R²)及避免过拟合的注意事项。代码实践展示了如何用Python实现二次多项式回归,并分析残差图验证模型合理性。(150字
2025-08-10 10:30:00
536
原创 时间序列处理:从“杂乱数据”到“趋势预测”,3步解锁时间的秘密
文章摘要: 时间序列数据(如步数、股价、降雨量)蕴含规律但常受噪声和波动干扰。本文从基础到实战,详解时间序列处理的三大核心技术: 平滑处理(移动平均SMA、指数加权EWMA)去除噪声,突出趋势; 分解技术拆解数据为趋势、季节性和残差成分,便于独立分析; ARIMA模型结合自回归、差分和移动平均预测未来值。 通过Python代码演示完整流程:生成模拟数据→平滑去噪→成分分解→预测未来30天销量,帮助从杂乱数据中提取有效信息并实现预测。
2025-08-09 11:30:00
596
原创 降维技术:用PCA把高维数据“压扁”,信息还不丢?(附完整代码)
主成分分析(PCA)是一种高效的高维数据降维技术,通过找到数据方差最大的方向(主成分),将多维数据压缩到2D/3D空间,同时保留大部分核心信息。PCA适用于数据可视化、加速模型训练和去除特征冗余,但不适合非线性数据或需要特征可解释性的场景。选择主成分数量时可依据方差解释率(建议≥80%)、碎石图拐点或业务需求。PCA通过重组而非删除特征,实现“简化而不失真”,是应对维度灾难的利器。
2025-08-08 10:30:00
934
原创 数据平衡:别让模型“偏心”!少数类样本的“生存指南”
数据不平衡问题严重影响模型对少数类的识别能力,如欺诈检测或疾病诊断中,模型可能因偏向多数类而失效。本文介绍了三种核心解决方法:1)过采样(如SMOTE算法)通过生成虚拟少数类样本平衡数据;2)欠采样通过减少多数类样本数量;3)加权损失函数调整类别权重。方法选择取决于数据特点:少数类极少用SMOTE,多数类极多用欠采样,中等不平衡用加权损失。代码实战演示了SMOTE处理不平衡数据的效果,可视化显示平衡后模型能更好识别少数类。这些技术可帮助开发者在实际应用中解决数据不平衡问题。
2025-08-07 11:00:00
759
原创 类别编码:让模型“读懂”文字的核心技巧,目标编码为何能秒杀独热编码?
摘要: 机器学习模型无法直接处理文字类别特征(如城市、商品类别),需要将其编码为数值。目标编码(Target Encoding)是一种高效方法,尤其适用于高基数类别(如数百个城市)。其核心思想是用类别的目标变量均值(如房价均值)作为编码值,并引入平滑参数防止小样本过拟合。相比独热编码(维度爆炸)和标签编码(虚假顺序),目标编码能保留特征与目标的关联性,提升模型预测力。代码演示显示,目标编码值能准确反映类别房价分布,验证了其有效性。适用场景:高基数类别(城市、商品ID等),小基数类别仍推荐独热编码或标签编码。
2025-08-06 09:00:00
1761
原创 特征工程:决定模型上限的“炼金术”,从数据到性能的关键一跃!
特征工程是提升机器学习性能的关键步骤,通过数据转换让模型更高效地学习。本文系统介绍了5大核心方法:1)特征缩放(标准化/归一化)消除量纲差异;2)特征编码(独热/标签编码)处理类别数据;3)特征选择(过滤/嵌入/包裹法)剔除冗余特征;4)特征提取(如PCA)实现降维;5)特征构造创造高阶特征。文章通过房价预测等实例,结合数学公式和Python代码演示全流程,可视化展示了特征工程如何显著提升数据质量。这些方法能帮助模型突破原始数据局限,实现"用更少数据获得更好效果"的目标。(149字)
2025-08-05 12:11:32
1198
原创 特征选择:给模型“减负”的3大方法,性能提升不止一点点!
摘要: 机器学习中,特征冗余会导致模型效率下降和预测不准。特征选择通过筛选关键特征提升性能,主要方法包括: 过滤法:基于统计指标(如皮尔逊相关系数、F值)快速剔除无关特征,适合大规模特征初筛; 包裹法(如RFE):通过模型性能迭代选择最优子集,精度高但计算成本大; 嵌入法(如Lasso回归):在模型训练中自动筛选特征,兼顾效率与准确性。 选择策略:过滤法用于快速粗筛,包裹法追求高精度,嵌入法适合一步到位。代码实例对比了三种方法,可视化特征重要性差异。
2025-08-04 11:30:00
746
原创 数据归一化:让特征“讲同一种语言”,模型预测更靠谱!
机器学习中的特征归一化:平衡数据尺度,提升模型性能 在机器学习中,当特征量纲差异较大(如年龄0-100岁和月消费0-10000元)时,模型可能偏向数值更大的特征,导致预测偏差。数据归一化通过数学变换消除量纲影响,确保各特征公平参与建模。本文详解两种常用方法: 最小-最大归一化:线性压缩至[0,1]区间,公式为(x-min)/(max-min)。适用于有明确边界的数据(如图像像素),但受异常值影响大。 Z-Score标准化:基于均值(μ)和标准差(σ)转换为标准正态分布,公式为(x-μ)/σ。对异常值稳健,适
2025-08-03 12:55:52
885
原创 数据编码:让模型读懂“类别”的两种核心方法(附公式+代码)
文章摘要 机器学习模型需要将类别型数据(如颜色、学历)转换为数值才能处理。本文详解两种核心编码方法:**类别编码(Label Encoding)**适用于有序类别(如等级、尺寸),通过整数保留顺序关系;**独热编码(One-Hot Encoding)**适用于无序类别(如城市、颜色),用二进制向量消除虚假顺序。关键区别在于是否保留类别顺序和维度变化。文章通过公式推导、场景对比和Python代码演示(含可视化),帮助读者掌握如何根据数据类型选择合适编码方法,避免模型误读。附完整代码展示两种编码对特征相关性的不
2025-08-02 10:00:00
587
原创 数据标准化:让特征“公平竞争”的两种核心方法(完整篇)
数据标准化是机器学习预处理的关键步骤,本文介绍了两种核心方法:归一化(Min-Max)和标准化(Z-Score)。归一化将数据压缩到固定范围(如[0,1]),适合有边界且无异常值的数据;标准化使数据符合标准正态分布(均值0,标准差1),对异常值更稳健且适用于依赖距离计算的模型。文章通过公式推导、应用场景对比和完整Python代码实现,直观展示了两种方法的效果差异,并给出了避免数据泄露和处理异常值的实用建议。掌握这两种标准化技巧,能有效提升模型训练效果和预测精度。
2025-08-01 10:28:54
1154
原创 十大数据预处理技巧:1. 数据清洗 (Data Cleaning)
数据分析预处理实战指南:缺失值与异常值处理 数据预处理是建模的关键步骤,直接影响模型效果。本文针对两大核心问题提供解决方案: 缺失值处理: 均值/中位数填充:正态分布用均值(如身高),偏态分布用中位数(如收入) 插值法:时间序列等趋势数据适用(如线性插值) 异常值检测: Z-Score法:适用于正态分布(|Z|>3为异常) IQR法:对偏态数据更友好(超出1.5倍四分位距为异常) 实战演示通过Python代码,3步完成数据清洗: 中位数填充缺失值 3σ法则处理异常值 标准化处理 避坑提示:不同数据类型
2025-07-31 12:27:14
1543
原创 Facebook出品的时间序列神器:Prophet,小白也能轻松搞定预测!
摘要: Meta开发的Prophet是一款易用的时间序列预测工具,适合业务人员快速预测趋势、季节性和节假日影响。其核心公式$y(t) = g(t) + s(t) + h(t) + \epsilon_t$自动分解长期趋势、周期波动和突发事件,仅需几行代码即可完成预测。实战案例演示了冰淇淋店销量预测,涵盖数据准备、模型训练及结果解读。Prophet支持Logistic趋势、乘法季节性等进阶功能,适用于电商、能源等场景,但对高频数据效果有限。附完整电商销售预测案例,包含数据模拟、模型训练及可视化分析,展现其强大易
2025-07-30 23:55:14
1010
原创 用K-means+DTW破解时间序列聚类难题:从原理到实战(含核心公式)
【摘要】传统欧氏距离无法准确衡量具有时间偏移或伸缩特性的时间序列相似性。针对这一问题,结合动态时间规整(DTW)和K-means的混合方法展现出显著优势:DTW通过非线性对齐处理时间序列的异步问题,找到最优匹配路径;K-means则基于DTW距离实现高效聚类。该组合在金融、医疗等领域具有广泛应用价值,能有效识别波形相似但存在时间差异的模式。实验通过生成4类不同周期/相位的正弦波数据,演示了完整的聚类流程,包括数据归一化、模型构建及结果可视化。优化建议包括使用FastDTW加速计算、采用肘部法确定最佳聚类数等
2025-07-29 12:00:00
731
原创 PCA降维高维时间序列:原理、公式与代码逻辑全解析
摘要: PCA(主成分分析)能有效解决高维时间序列分析中的信息冗余、计算成本高和可视化困难问题。其核心原理是通过寻找方差最大的正交方向(主成分)进行数据投影,步骤包括数据中心化、协方差矩阵计算、特征分解和主成分选择。针对时间序列,需额外进行平稳性处理(如差分)以保留时间依赖性。通过Python代码示例展示了从10维环境数据到2维主成分的完整流程,包括数据生成、预处理、PCA降维及可视化验证,2个主成分即可保留92%的原始信息。该方法为高维时间序列分析提供了高效的降维解决方案。
2025-07-28 20:30:00
948
原创 时间序列预测的“记忆大师”:LSTM神经网络,破解长序列依赖难题!
LSTM模型在长序列预测中表现出色,能够有效解决传统RNN的梯度消失问题。本文介绍了LSTM的核心原理,包括遗忘门、输入门和输出门机制,以及细胞状态的关键作用。通过PyTorch实现LSTM模型预测带噪声的正弦波数据,展示了其处理长期依赖的能力。实验结果表明,LSTM凭借门控机制能够选择性保留重要信息,适用于处理金融、自然语言处理等领域的复杂时序数据。
2025-07-28 11:00:00
1183
原创 当XGBoost遇上时间序列:用“树“的智慧破解预测难题
XGBoost在时间序列预测中的跨界应用 本文探讨了XGBoost这一传统分类回归模型在时间序列预测中的独特应用。通过巧妙的特征工程,将时序数据转化为监督学习格式,XGBoost展现出强大的非线性拟合能力。文章以带噪声的正弦波为例,详细演示了从数据生成、滑动窗口特征构造、模型训练到预测评估的全流程。实验结果表明,XGBoost能有效捕捉周期性特征并抵抗噪声干扰,在测试集上取得良好表现。文章还总结了XGBoost处理时序数据的优势,包括非线性建模、抗噪能力、非平稳性适应等,并提出了进阶特征工程建议,为时序预测
2025-07-27 20:45:00
740
原创 XGBoost预测客户流失:含公式推导与完整代码实现
本文详细介绍了使用XGBoost模型预测客户流失风险的方法,包含理论推导和实战代码。核心内容包括:1)XGBoost原理与公式推导,重点说明目标函数、泰勒展开和节点分裂增益计算;2)客户流失预测的关键注意事项,如处理类别不平衡、特征工程和评价指标选择;3)完整Python实现,涵盖数据预处理、SMOTE过采样、模型训练及评估可视化。通过理论结合实践的方式,帮助读者掌握从数据准备到模型部署的全流程,特别适合需要构建高效客户流失预警系统的从业者参考。
2025-07-27 11:30:00
795
原创 弹性网络回归:结合 L1 与 L2 正则化的 “全能型” 模型
摘要:弹性网络回归(Elastic Net Regression)通过结合L1和L2正则化,平衡了拉索回归的特征选择能力与岭回归的稳定性。其核心优势在于处理高度相关特征时能同时保留重要特征,避免过拟合,同时保持模型稀疏性。本文通过Python实例演示了弹性网络的实现过程,包括参数调优、特征系数分析和性能评估,展示了该算法在特征选择与预测准确性方面的优越表现。弹性网络特别适用于高维数据、存在相关特征且需要模型解释性的场景,是机器学习中预测能力与解释性平衡的理想选择。
2025-07-26 20:00:00
832
原创 拉索回归:用 L1 正则化打造更“精简”的模型
拉索回归(Lasso Regression)是一种通过L1正则化实现特征选择和防止过拟合的线性回归方法。它在传统线性回归损失函数中加入系数绝对值之和的正则项,能自动将无关特征的系数压缩为零,生成稀疏模型。文章通过Python实例演示了拉索回归的工作流程:生成含噪声的虚拟数据(10个特征中仅4个真实有效),训练模型并评估性能。结果显示拉索回归能准确识别重要特征,在保持预测精度的同时简化模型结构。该方法特别适用于高维数据建模、需要模型解释性及防止过拟合的场景,通过调整正则化强度α可在模型简洁性和准确性间取得平衡
2025-07-26 11:45:00
586
原创 时间序列预测的“亲民神器”:Holt-Winters指数平滑法,手把手教你搞定趋势与季节!
Holt-Winters指数平滑法是一种高效的时间序列预测方法,能同时捕捉长期趋势和周期性波动。该模型通过水平项、趋势项和季节项三个核心要素分解数据,提供加法与乘法两种形式以适应不同波动特征。本文以奶茶店销量预测为例,演示了完整的Python实现流程:从模拟数据生成、模型参数设置到未来30天预测。通过四维可视化结果(原始数据拟合、残差分布、误差时序和季节成分),直观展示模型效果。该方法无需复杂调参,代码简洁,是业务场景中实用的预测工具,特别适合具有明显趋势和季节性的数据预测。
2025-07-25 22:45:00
548
原创 金融波动率的“捕手”:GARCH模型,揭秘市场波动的“聚集密码”
摘要: GARCH模型(广义自回归条件异方差)是金融时间序列分析中用于捕捉“波动聚类”现象的核心工具。传统模型(如ARIMA)无法刻画金融数据的时变波动特性,而GARCH通过建模条件方差的动态变化(如$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$),精准预测波动率。Python实战显示,GARCH能有效拟合模拟金融数据的波动聚类,残差无自相关,验证了其优越性。该模型在波动率预测、风险价值(VaR)计算和期权定
2025-07-25 20:00:00
1419
原创 时间序列预测的“季节大师”:SARIMA模型,专治周期性波动!
本文介绍了季节性自回归积分移动平均模型(SARIMA),作为ARIMA的扩展版本,专门用于处理具有季节性波动的时间序列数据。文章首先通过实例说明ARIMA模型在处理季节性数据时的局限性,进而详细解析SARIMA模型的结构参数(p,d,q)×(P,D,Q)ₛ及其工作原理。通过Python代码演示了SARIMA在简单季节性和复杂季节性数据上的应用效果,结果表明SARIMA能有效捕捉周期性规律,并通过季节性分解直观展示了模型的预测能力。该模型通过两步差分和双重建模,实现了对趋势和季节性的同步处理,是时间序列预测的
2025-07-25 12:00:00
890
原创 岭回归:平衡模型复杂度与泛化能力
岭回归是线性回归的改进方法,通过引入L2正则化项防止过拟合,特别适用于特征多或共线性的场景。原理是在损失函数中加入参数L2范数惩罚项,通过数学推导得到闭式解,确保特征共线时仍可求解。核心特性包括参数收缩、连续解路径和高效计算。文中通过Python实现展示了从数据生成、多项式特征转换到模型训练、预测及可视化的完整流程,包括拟合效果展示、预测值对比和正则化参数影响分析。最后强调正则化参数α的选择至关重要,并指出岭回归适用于高维特征和共线性数据。
2025-07-25 10:17:33
384
1
原创 ARIMA 模型:非平稳时间序列预测的 “瑞士军刀”
ARIMA模型:从非平稳序列到精准预测 ARIMA模型通过差分技术解决了ARMA只能处理平稳序列的局限,适用于带趋势的时间序列预测。其核心参数(p,d,q)分别代表自回归阶数、差分次数和移动平均阶数。差分操作(如一阶差分消除线性趋势)是ARIMA的关键步骤,可将非平稳数据转化为平稳序列。建模过程包括平稳性检验(ADF测试)、确定差分阶数d,并通过ACF/PACF图选择最优p和q值。虽然ARIMA在短期预测中表现优异,但不适合长期预测和季节性数据。Python实现案例展示了从数据生成、差分处理到模型拟合和预测
2025-07-25 07:30:00
959
原创 时间序列中的“联动大师”:VAR向量自回归模型,揭秘变量间的隐秘关联!
摘要: VAR(向量自回归)模型是多变量时间序列分析的利器,突破了传统单变量模型(如ARIMA)的局限,可捕捉变量间的动态联动关系。其核心公式通过系数矩阵量化变量间的滞后影响(如促销对销量的作用及反向反馈)。建模需确保变量平稳性,通过AIC/BIC选择最优滞后阶数,并借助OLS估计参数。Python案例演示了如何用VAR(4)模型分析正弦-余弦序列的联动与预测。VAR的核心优势在于脉冲响应函数(IRF)和方差分解,能解析变量冲击的持续影响及其对预测误差的贡献率,适用于宏观经济、金融市场等多元交互场景,是研究
2025-07-24 21:21:11
652
原创 时间序列预测的“黄金搭档”:ARMA模型,结合AR与MA的双重优势!
ARMA模型:整合AR与MA优势的时间序列预测利器 ARMA模型结合了自回归(AR)和移动平均(MA)模型的优点,通过AR部分捕捉历史数据的线性依赖关系,MA部分修正随机噪声,形成更精准的预测工具。其核心公式为ARMA(p,q),其中p、q分别代表AR和MA的阶数。模型需满足平稳性和可逆性条件,参数估计采用最大似然法,阶数选择依赖ACF/PACF图或信息准则。Python实战演示了ARMA(2,2)的建模流程,包括数据生成、参数估计和预测可视化。ARMA模型适用于平稳序列的短期预测,但存在对非线性数据效果差
2025-07-24 21:08:11
1152
原创 时间序列降噪神器:MA移动平均模型,让数据“丝滑”起来!
本文介绍了时间序列分析中的经典移动平均模型(MA模型)。MA模型通过历史预测误差的线性组合来预测未来值,与AR模型形成互补。文章详细阐述了MA模型的核心思想、数学原理、参数估计方法及阶数选择标准,并通过Python实例演示了MA模型在数据降噪中的应用。MA模型擅长处理短期波动和噪声过滤,但对长期趋势捕捉能力较弱,主要适用于平稳序列建模。本文还区分了MA(q)模型与简单移动平均(SMA)的本质差异,并指出MA模型需要与更复杂的模型结合来处理非平稳或非线性序列。
2025-07-24 21:05:00
846
原创 时间序列预测“元老”——AR自回归模型,一篇吃透!
用过去的数值预测未来。想象一下:如果我们想预测明天的气温,最直观的思路是什么?大概率会参考昨天、前天甚至上周同期的气温——AR模型正是基于这个逻辑构建的。它假设时间序列中当前时刻的数值,可以通过前几个时刻的数值的线性组合来表示,再加上一个随机扰动项(白噪声)。AR模型是一种线性预测模型,通过历史数据的线性组合来预测未来值,且要求时间序列满足“平稳性”假设。这里的“平稳性”是关键,它指时间序列的均值、方差和自协方差不随时间变化。
2025-07-24 21:01:32
629
原创 绝了!用卷积 LSTM 玩时序预测,还能搞定多尺度问题!!
时空信息双抓:用卷积替代LSTM的全连接,既能学时间依赖,又能保空间结构;多尺度特征提取:靠不同卷积核或窗口,抓不同层级的时空规律,预测精度更高。
2025-07-24 20:55:53
1372
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人