在上一期《十大时间序列方法之一:AR自回归模型》中,我们学习了如何用历史数据的线性组合预测未来。今天,我们将探索另一个经典模型——移动平均模型(Moving Average Model,简称MA模型)。它与AR模型有着截然不同的视角,却同样在时间序列分析中占据重要地位。
一、MA模型:用“过去的错误”预测未来
1. 核心思想
与AR模型直接使用历史观测值不同,MA模型认为当前值主要受过去预测误差的影响。
举个生活化的例子:天气预报员预测明天的气温时,如果昨天预测的温度比实际高了2℃(正误差),今天预测时可能会刻意调低一些;如果上周连续3天预测偏低(负误差),这周预测时可能会适当调高。这种“根据过去的预测偏差调整当前预测”的逻辑,正是MA模型的核心。
2. 与AR模型的对比
模型 | 建模对象 | 核心假设 | 数据要求 |
---|---|---|---|
AR§ | 历史观测值 | 当前值依赖过去p期的观测值 | 序列平稳 |
MA(q) | 历史误差项 | 当前值依赖过去q期的预测误差 | 序列平稳 |
二、MA模型的数学原理
1. 标准公式
对于q阶移动平均模型(记为MA(q)),其数学表达式为:
xt=μ+εt+θ1εt−1+θ2εt−2+...+θqεt−qx_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + ... + \theta_q \varepsilon_{t-q}xt=μ+εt+θ1εt−1+θ2εt−2+...+θqεt−q
其中:
- xtx_txt:t时刻的观测值;
- μ\muμ:序列的均值(通常为0);
- εt\varepsilon_tεt:t时刻的白噪声误差项(独立同分布,均值为0,方差为σ2\sigma^2σ