时间序列降噪神器:MA移动平均模型,让数据“丝滑”起来!

在上一期《十大时间序列方法之一:AR自回归模型》中,我们学习了如何用历史数据的线性组合预测未来。今天,我们将探索另一个经典模型——移动平均模型(Moving Average Model,简称MA模型)。它与AR模型有着截然不同的视角,却同样在时间序列分析中占据重要地位。

一、MA模型:用“过去的错误”预测未来

1. 核心思想

与AR模型直接使用历史观测值不同,MA模型认为当前值主要受过去预测误差的影响

举个生活化的例子:天气预报员预测明天的气温时,如果昨天预测的温度比实际高了2℃(正误差),今天预测时可能会刻意调低一些;如果上周连续3天预测偏低(负误差),这周预测时可能会适当调高。这种“根据过去的预测偏差调整当前预测”的逻辑,正是MA模型的核心。

2. 与AR模型的对比

模型 建模对象 核心假设 数据要求
AR§ 历史观测值 当前值依赖过去p期的观测值 序列平稳
MA(q) 历史误差项 当前值依赖过去q期的预测误差 序列平稳

二、MA模型的数学原理

1. 标准公式

对于q阶移动平均模型(记为MA(q)),其数学表达式为:

xt=μ+εt+θ1εt−1+θ2εt−2+...+θqεt−qx_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + ... + \theta_q \varepsilon_{t-q}xt=μ+εt+θ1εt1+θ2εt2+...+θqεtq

其中:

  • xtx_txt:t时刻的观测值;
  • μ\muμ:序列的均值(通常为0);
  • εt\varepsilon_tεt:t时刻的白噪声误差项(独立同分布,均值为0,方差为σ2\sigma^2σ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值