Elasticsearch学习笔记-第54节:初识搜索引擎_相关度评分TF&IDF算法独家解密

本文深入探讨了Elasticsearch中TF-IDF算法的工作原理,解释了如何计算文档的相关性评分,包括term frequency、inverse document frequency及field-length norm等关键概念。通过具体实例,展示了算法在实际搜索场景中的应用。

课程大纲

1、算法介绍

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度

Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法

Term frequency:搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关

搜索请求:hello world

doc1:hello you, and world is very good
doc2:hello, how are you

Inverse document frequency:搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的次数越多,就越不相关

搜索请求:hello world

doc1:hello, today is very good
doc2:hi world, how are you

比如说,在index中有1万条document,hello这个单词在所有的document中,一共出现了1000次;world这个单词在所有的document中,一共出现了100次

doc2更相关

Field-length norm:field长度,field越长,相关度越弱

搜索请求:hello world

doc1:{ "title": "hello article", "content": "babaaba 1万个单词" }
doc2:{ "title": "my article", "content": "blablabala 1万个单词,hi world" }

hello world在整个index中出现的次数是一样多的

doc1更相关,title field更短

2、_score是如何被计算出来的

GET /test_index/test_type/_search?explain
{
  "query": {
    "match": {
      "test_field": "test hello"
    }
  }
}

{
  "took": 6,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 4,
    "max_score": 1.595089,
    "hits": [
      {
        "_shard": "[test_index][2]",
        "_node": "4onsTYVZTjGvIj9_spWz2w",
        "_index": "test_index",
        "_type": "test_type",
        "_id": "20",
        "_score": 1.595089,
        "_source": {
          "test_field": "test hello"
        },
        "_explanation": {
          "value": 1.595089,
          "description": "sum of:",
          "details": [
            {
              "value": 1.595089,
              "description": "sum of:",
              "details": [
                {
                  "value": 0.58279467,
                  "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 0.58279467,
                      "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 0.6931472,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 2,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 4,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 0.840795,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 1.75,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 2.56,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                },
                {
                  "value": 1.0122943,
                  "description": "weight(test_field:hello in 0) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 1.0122943,
                      "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 1.2039728,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 4,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 0.840795,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 1.75,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 2.56,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value": 0,
              "description": "match on required clause, product of:",
              "details": [
                {
                  "value": 0,
                  "description": "# clause",
                  "details": []
                },
                {
                  "value": 1,
                  "description": "*:*, product of:",
                  "details": [
                    {
                      "value": 1,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "queryNorm",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard": "[test_index][2]",
        "_node": "4onsTYVZTjGvIj9_spWz2w",
        "_index": "test_index",
        "_type": "test_type",
        "_id": "6",
        "_score": 0.58279467,
        "_source": {
          "test_field": "tes test"
        },
        "_explanation": {
          "value": 0.58279467,
          "description": "sum of:",
          "details": [
            {
              "value": 0.58279467,
              "description": "sum of:",
              "details": [
                {
                  "value": 0.58279467,
                  "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 0.58279467,
                      "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 0.6931472,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 2,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 4,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 0.840795,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 1.75,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 2.56,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value": 0,
              "description": "match on required clause, product of:",
              "details": [
                {
                  "value": 0,
                  "description": "# clause",
                  "details": []
                },
                {
                  "value": 1,
                  "description": "*:*, product of:",
                  "details": [
                    {
                      "value": 1,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "queryNorm",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard": "[test_index][3]",
        "_node": "4onsTYVZTjGvIj9_spWz2w",
        "_index": "test_index",
        "_type": "test_type",
        "_id": "7",
        "_score": 0.5565415,
        "_source": {
          "test_field": "test client 2"
        },
        "_explanation": {
          "value": 0.5565415,
          "description": "sum of:",
          "details": [
            {
              "value": 0.5565415,
              "description": "sum of:",
              "details": [
                {
                  "value": 0.5565415,
                  "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 0.5565415,
                      "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 0.6931472,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 2,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 0.8029196,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 2.5,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 4,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value": 0,
              "description": "match on required clause, product of:",
              "details": [
                {
                  "value": 0,
                  "description": "# clause",
                  "details": []
                },
                {
                  "value": 1,
                  "description": "_type:test_type, product of:",
                  "details": [
                    {
                      "value": 1,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "queryNorm",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard": "[test_index][1]",
        "_node": "4onsTYVZTjGvIj9_spWz2w",
        "_index": "test_index",
        "_type": "test_type",
        "_id": "8",
        "_score": 0.25316024,
        "_source": {
          "test_field": "test client 2"
        },
        "_explanation": {
          "value": 0.25316024,
          "description": "sum of:",
          "details": [
            {
              "value": 0.25316024,
              "description": "sum of:",
              "details": [
                {
                  "value": 0.25316024,
                  "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 0.25316024,
                      "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 0.2876821,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 1,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 0.88,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 3,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 4,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value": 0,
              "description": "match on required clause, product of:",
              "details": [
                {
                  "value": 0,
                  "description": "# clause",
                  "details": []
                },
                {
                  "value": 1,
                  "description": "*:*, product of:",
                  "details": [
                    {
                      "value": 1,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "queryNorm",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}

3、分析一个document是如何被匹配上的

GET /test_index/test_type/6/_explain
{
  "query": {
    "match": {
      "test_field": "test hello"
    }
  }
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值