chatbot学习汇总

本文探讨了chatbot在客服场景的应用,从规则、问答库、自然语言架构到深度学习的解决方案。重点介绍了自然语言理解、对话管理和生成,并推荐了Rasa开源工具。最后提到了端到端深度学习chatbot的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

场景

方案

方案1、规则

方案2、问答库

方案3、自然语言架构

自然语言理解(Nature Language Understanding)

对话管理(Dialogue Management)

自然语言生成(Natrual Language Generation)

方案4、端到端的深度学习chatbot


场景

chatbot要代替的是类似这种场景:

垂直领域的客服系统,用户产生大量相似疑问和需求,目标明确或半明确且可能需要引导。

而客服(chatbot)具有领域专业知识(知识图谱)与丰富问答经验(问答历史数据),可以快速解决用户问题和需求。chatbot解决不了的,再转到人工客服。

很多场景可能最频繁的前十个问题已经可以解决大部分用户问题,而chatbot的优势在于可以自动获取用户画像、快速读取海量知识库、通过多轮对话快速给出个性化答案。

类似的场景,如医院科室咨询、商品售后服务、淘宝客服、证券投资咨询、银行业务办理等。这些场景真正落地和解决的感觉还不多,任重而道远。

方案

方案1、规则

方案2、问答库

维护一个庞大的问答数据库,通过计算句子之间的相似度,寻找数据库中与用户问题相似的问题,然后给出相应答案。由于用户会提很多重复问题,所以每一个新问题都会和已有问题做匹配,如skip-thought计算句向量方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值