最近假期,参考李航的《统计学习方法》和Peter Harrington的《机器学习实战》整理了之前学习的机器学习算法(原理+python实现),欢迎小伙伴们交流。
1.kNN原理
k近邻算法比较简单、直观,简单的说就是采用测量不同的特征值之间的距离方法进行分类,也就是给定一个训练数据集,对新的输入实列,在训练数据集中找到与该实例最相似(最邻近)的k个实列,这k个实列所属最多的类就是该输入实列的类别。
2.kNN特点
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高
使用范围:数值型和标称型
3.kNN实现
def classify0(inX, dataSet, labels, k):
#获取训练样本数量
dataSetSize = dataSet.shape[0]
#构造输入值和训练样本的差值矩阵
diffMat = tile(inX, (dataSetSize,1)) - dataSet