k-近邻算法(kNN)

本文介绍了k-近邻算法(kNN)的基本原理,包括其利用距离度量进行分类的特点。kNN算法简单直观,但存在计算复杂度和空间复杂度高的问题。文章适合对机器学习感兴趣的读者,特别是对kNN算法想要深入理解的初学者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近假期,参考李航的《统计学习方法》和Peter Harrington的《机器学习实战》整理了之前学习的机器学习算法(原理+python实现),欢迎小伙伴们交流。

1.kNN原理

k近邻算法比较简单、直观,简单的说就是采用测量不同的特征值之间的距离方法进行分类,也就是给定一个训练数据集,对新的输入实列,在训练数据集中找到与该实例最相似(最邻近)的k个实列,这k个实列所属最多的类就是该输入实列的类别。

2.kNN特点

优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高
使用范围:数值型和标称型

3.kNN实现

def classify0(inX, dataSet, labels, k):
    #获取训练样本数量
    dataSetSize = dataSet.shape[0]
    #构造输入值和训练样本的差值矩阵 
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值