
视觉跟踪
Particlefilter
CV和ML的初学者啊
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
视觉跟踪算法—deeplearning
视觉跟踪,就是依据目标在第一帧的位置,对后续帧中目标的位置进行判定的过程。其主要困难是如何适应目标在运动过程中受内外部因素的影响而引起的外观变化。主要分为生成模型方法和判别模型方法。所谓生成模型,就是依据历史帧,生成模型,用以检测当前帧中候选目标的重构误差,重构误差最小的即为跟踪结果。判别模型,是将跟踪视为二分类分别,当前区域是由背景及目标组成。通过在当前帧采集正负样本,实现对分类器参数的更新。同原创 2014-01-08 12:50:56 · 4976 阅读 · 2 评论 -
图像处理方面期刊
上网搜一下,有很多的,以下是图像处理方面的,好不好投与文章质量有很大关系,如果是第一次投,而又不是急着要文章的话,我建议投比文章质量相当期刊稍好一点的期刊,这样能学到更多比PAMI,IJCV稍差点的期刊有TIP,IET Image Processing, computer vision and image understanding, image and vision computing之原创 2014-09-06 11:14:09 · 4207 阅读 · 0 评论 -
2014ECCV视觉跟踪录用文章
Motion and tracking44 129A Generative Model for the Joint Registration of Multiple Point Sets133Tracking using Multilevel Quantizations193Multispectral Image Dens原创 2014-06-16 07:51:23 · 3714 阅读 · 0 评论 -
Haar类特征及其在视觉跟踪中的应用
看Harr类特征时间比较久了,一直搞不清楚到底是怎么将其应用到tracking 中的,今天总算有点感觉。同时也意识到,必须对自己的体会做一个简单的整理。Harr类特征是由一个特征、阈值及标志不等号方向的数组成。其中特征不仅与矩形的尺度有关,还与矩形所处的位置有关。我觉得在训练分类器时,样本的大小必须是一样的。然后让同一个矩形在这些样本上面同时移动,找出最好的矩特征。但是,第一个矩特征肯定有分错的样原创 2013-12-20 17:20:08 · 2109 阅读 · 0 评论 -
2013视觉跟踪的初学者
我是2012年上的博士,之前一直在高校做教师,平平淡淡,带带课,申请个校级项目、厅级项目,参加个院级教学比赛。终日提心吊胆,生怕出一点差错被人批。终于赶上学校的“双百计划”,我考上了博士。刚上博士的第一学期,像个无头苍蝇,乱飞乱撞,毫无头绪。由于自己之前看过Kalman滤波,所以看粒子滤波,又看到粒子滤波在视觉跟踪中应用很广泛。就看视觉跟踪的东西。就这样一步步走进了这个领域。所以真正接触visua原创 2013-12-20 20:12:25 · 4431 阅读 · 5 评论 -
CamShift算法,OpenCV实现2-Mean Shift算法 (转载)
CamShift算法,OpenCV实现2-Mean Shift算法 (转载) 这里来到了CamShift算法,OpenCV实现的第二部分,这一次重点讨论Mean Shift算法。在讨论Mean Shift算法之前,首先讨论在2D概率分布图像中,如何计算某个区域的重心(Mass Center)的问题,重心可以通过以下公式来计算:1.计算区域内0阶矩for(int i=0;i转载 2014-04-30 21:03:56 · 1356 阅读 · 0 评论 -
Opencv实现粒子滤波算法
摘要 本文通过opencv实现了一种目标跟踪算法——粒子滤波算法,算法的思想来源于文献[1][2],且在其思想上稍微做了些修改。其大概过程是:首先手动用鼠标框出一个目标区域,计算其直方图特征值作为模板,然后在该目标中心周围撒粒子,根据所撒粒子为中心的矩形框内计算其直方图特征,并与目标相比较,最后根据比较出的结果重复上面过程,即重采样的方法撒粒子,粒子扩散,状态观察,目标预测。最后通过实转载 2014-05-03 16:52:04 · 3272 阅读 · 1 评论 -
视觉跟踪算法
放寒假在家,学习效率与在学校相比,低了许多。倒是坐在车上,看文章效率蛮高。记得那天回家路上在车上看文章的几个小时,感觉挺好。一篇paper读了好几遍。国内视觉跟踪研究领域,牛人还是很多的。自从Xue Mei于2009年提出了L1跟踪器之后,国内很多人在此基础上做了许多的工作。我想其中最主要的工具当属字典学习算法了。字典学习的主要目的一是利用字典原子作为基函数表示候选目标,二是通过更新基函数以反原创 2014-01-22 07:57:44 · 2811 阅读 · 0 评论 -
流行的视觉跟踪算法
流行的视觉追踪方法分类: 视频追踪2013-04-03 08:5058人阅读评论(0)收藏举报standard mean shift tracker(MS)CVPR-00“Real-time tracking of non-rigid objects using mean shift”mean shift tracker(MS)PAMI-03“Kernel-ba转载 2013-05-13 08:03:14 · 2550 阅读 · 0 评论 -
Mean Shift Tracking: 2000-2012回顾
分类: visual tracking计算机视觉paper reading2013-03-19 21:27495人阅读评论(10)收藏举报visual trackingmean shiftcomputer vision视觉跟踪Mean Shift跟踪从2000年被提出至今已经经历了十余个年头,从被大量灌水到如今不屑被拿来作为比较算法,经历了辉煌高潮的 Mean-Shift ba转载 2013-05-13 08:09:06 · 1705 阅读 · 0 评论 -
视觉跟踪算法综述
视觉跟踪综述 转自:http://www.cnblogs.com/CVArt/archive/2011/07/03/2096683.html 目标跟踪是绝大多数视觉系统中不可或缺的环节。在二维视频跟踪算法中,基于目标颜色信息或基于目标运动信息等方法是常用的跟踪方法。从以往的研究中我们发现,大多数普通摄像头(彩色摄像头)下非基于背景建模的跟踪算法都极易受转载 2013-05-13 08:14:32 · 3120 阅读 · 0 评论 -
matlab视觉跟踪算法
我看一些视觉跟踪算法,代码写起来好麻烦,可想而知,作者有了idea后,还要实现,实现完了之后,还要与其他的state-of-the-art去比,应该很麻烦吧!那位大牛告诉我,怎么提高动手能力呢!?原创 2013-11-28 10:17:07 · 3508 阅读 · 0 评论 -
L1 跟踪器(l1-minimization tracker)
L1跟踪器是由Mei Xue和Lin Haibing老师于2009年提出来的。其最基本的工具就是由马毅等人2009年在 PAMI上发的文章Robust face recognition via sparse representation提出来的。整个跟踪过程同样是由Particle filter所引导的。在当前帧中,前一帧跟踪结果附近按照粒子滤波采样获得当前帧中候选目标。假设每一个候选目标均可由目原创 2014-01-09 17:00:25 · 5320 阅读 · 1 评论 -
均值漂移跟踪器(Meanshift tracking)
Meanshift tracking是由美国人D.Comaniciu等人于2001年在CVPR会议上提出,2003刊登于PAMI。虽然现在有人评论说,其研究热度及应用价值在减退,但是它的研究仍在继续。在中国,西电就有人有这方面的工作。就2001年的工作而言,在初始帧选定跟踪目标后,建立像素统计直方图,比如考虑50x60的灰度图像时,就是要将这3000个像素点分配到256个像素bins中去。在具原创 2014-01-09 20:33:12 · 2512 阅读 · 0 评论 -
增量视觉跟踪器(Incremental visual tracking ,IVT)
IVT基于PCA的思想,在获得以往跟踪结果所构成图像空间条件下,对图像空间进行PCA处理,获得均值和特征向量。跟踪过程由粒子滤波引导。为了实现对下一帧中目标得识别与跟踪,以当前帧跟踪结果为均值,预先设定的阈值为方差,抽取粒子作为跟踪候选目标,送入之前训练好的特征子空间中,计算候选目标与特征子空间中心之间的距离。则跟踪结果即为距离最短的候选点。继续下一帧跟踪,积累至5帧后,利用积累之结果对原有的子空原创 2014-01-09 11:29:22 · 4935 阅读 · 0 评论 -
基于Multiple instance learning的visual tracking
MIL 跟踪器在视觉跟踪领域很有名气。这种算法最早出现在2009'CVPR,后来加以整理发表在2011'PAMI.说老实话,我很喜欢阅读会议论文,读起来感觉文风轻松明快,不像期刊论文,对所在领域不是很熟悉的话,读起来相当吃力。这是题外话。现在言归正传。说起来,每种跟踪器的基本思路都是大同小异。都是在当前帧中前一帧跟踪结果周围采集候选目标,根据之前所学习得到的生成模型和判别模型,对候选目标进行得原创 2014-01-12 11:49:02 · 1794 阅读 · 0 评论 -
图像处理和图像识别中常用的OpenCV函数
图像处理和图像识别中常用的OpenCV函数1、cvLoadImage:将图像文件加载至内存;2、cvNamedWindow:在屏幕上创建一个窗口;3、cvShowImage:在一个已创建好的窗口中显示图像;4、cvWaitKey:使程序暂停,等待用户触发一个按键操作;5、cvReleaseImage:释放图像文件所分配的内存;原创 2014-08-23 09:12:41 · 1397 阅读 · 0 评论