[NOIP2000 提高组] 方格取数题解 -多线程动态规划

本文分析了一道NOIP提高组的算法题,涉及动态规划和多线程的应用。题目要求在N*N的方格矩阵中找出两次行走的最大路径和,每次只能向右或向下移动。通过多次优化,作者指出单次DP无法解决,需要考虑两遍DP同时进行,最终实现状态转移方程,并进行了空间优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

题意

给出一个N*N的数字方阵,从左上角走到右下角,每次只能向右或者向下走,走过的方格数字变为0。走两次,求两条路径的最大和。

题目分析

典型的动态规划题目。
如果走一次,定义 d p [ i ] [ j ] dp[i][j] dp[i][j]为走到 i i i j j j列的路径最大和,由于只能向右或者向下走,则转移方程为: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) + a [ i ] [ j ] dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + a[i][j] dp[i][j]=max(dp[i1][j],dp[i][j1])+a[i][j]。则 d p [ n ] [ n ] dp[n][n] dp[n][n]即为走到右下角的最大值。
那么,走两次的处理方式为:先跑一遍DP,将路径上的数置0,再跑一遍DP,将两次求得的 d p [ n ] [ n ] dp[n][n] dp[n][n]相加即可。这样正确么?
【举例】
对于如下方阵 a [ 3 ] [ 3 ] a[3][3] a[3][3],第一遍DP之后, d p [ N ] [ N ] dp[N][N] dp[N][N]的值为10,选择的路径如图三。
在这里插入图片描述
将路径1上的数值置0后,得到新的数字方阵,第二遍DP后,得到 d p [ N ] [ N ] dp[N][N] dp[N][N]的值为2,选择的路径如图三。
在这里插入图片描述

分开跑两次DP之后,得到两条最大的路径和为12,但是,经肉眼观察,可以找到两条更优的路径,其最大值为13。
在这里插入图片描述

至此,我们得到结论:先后跑两遍DP并不能得到答案。

观察上图,感性认识原因:
在第一DP时,即绿色路径,按照转移方程,选择了数字4,而不是数字2,单从第一遍DP来看,没有任何问题。但是在第二遍DP时,由于数字4已经被拿走,导致其选择的路径是向右拿数字2,而不是向下取数字1,单从第二遍DP来看,也没有问题。
但两遍DP并没有协同合作,我们希望第一遍DP取的是数字2,虽然当下不是最优,但是第二遍DP会取到数字4,达到整体最优。
因此,单独跑两遍DP,会使两者之前不能协同合作,当下的最优选择比较短视,只看到了自己,没有看到队友。

因此,必须考虑两遍DP同时进行(多线程DP),可以理解为有两个人同时从A出发到达B。
定义状态 d p [ x 1 ] [ y 1 ] [ x 2 ] [ y 2 ] dp[x1][y1][x2][y2] dp[x1][y1][x2][y2]为第一个人走到 x 1 x1 x1 y 1 y1 y1列,第二个人走到 x 2 x2 x2 y 2 y2 y2列的最大路径和,则情况有四种:

  • 第一个人向右,第二个人向右,即为 d p [ x 1 ] [ y 1 − 1 ] [ x 2 ] [ y 2 − 1 ] dp[x1][y1-1][x2][y2-1] dp[x1][y11][x2][y21]
  • 第一个人向下,第二个人向下,即为 d p [ x 1 − 1 ] [ y 1 ] [ x 2 − 1 ] [ y 2 ] dp[x1-1][y1][x2-1][y2] dp[x11][y1][x21][y2]
  • 第一个人向下,第二个人向右,即为 d p [ x 1 − 1 ] [ y 1 ] [ x 2 ] [ y 2 − 1 ] dp[x1-1][y1][x2][y2-1] dp[x11][y1][x2][y21]
  • 第一个人向右,第二个人向下,即为 d p [ x 1 ] [ y 1 − 1 ] [ x 2 − 1 ] [ y 2 ] dp[x1][y1-1][x2-1][y2] dp[x1][y11][x21][y2]

v = m a x ( d p [ x 1 ] [ y 1 − 1 ] [ x 2 ] [ y 2 − 1 ] , d p [ x 1 − 1 ] [ y 1 ] [ x 2 − 1 ] [ y 2 ] , d p [ x 1 − 1 ] [ y 1 ] [ x 2 ] [ y 2 − 1 ] , d p [ x 1 ] [ y 1 − 1 ] [ x 2 − 1 ] [ y 2 ] ) v = max(dp[x1][y1-1][x2][y2-1], dp[x1-1][y1][x2-1][y2], dp[x1-1][y1][x2][y2-1],dp[x1][y1-1][x2-1][y2]) v=max(dp[x1][y11][x2][y21]

### NOIP 2000 提高 方格问题分析 该问题属于经典的动态规划类题目,目标是在给定的一个二维矩阵中选若干个不相邻的字使得总和最大。此问题可以通过状态转移的方式解决。 #### 动态规划的核心思路 定义 `dp[i][j]` 表示到达第 `i` 行第 `j` 列时能够得的最大值之和[^1]。由于每次移动仅能向右或者向下,因此可以得出如下状态转移方程: 对于任意位置 `(i, j)` 的状态更新方式为: \[ dp[i][j] = \text{matrix}[i][j] + \max(dp[i-1][j], dp[i][j-1]) \] 其中需要注意边界条件处理以及初始值设定。当处于第一行或第一列时,路径的选择会受到限制[^2]。 #### 边界情况考虑 如果当前单元位于网格的第一行,则只能由左侧进入;同理,若当前位置处在首列,则唯一可能来自上方。这些特殊情况需单独初始化以确保计算准确性[^3]。 ```python def max_sum(matrix): m, n = len(matrix), len(matrix[0]) # 初始化 DP dp = [[0]*n for _ in range(m)] # 设置起点 dp[0][0] = matrix[0][0] # 填充第一行 for j in range(1, n): dp[0][j] = dp[0][j-1] + matrix[0][j] # 填充第一列 for i in range(1, m): dp[i][0] = dp[i-1][0] + matrix[i][0] # 完成剩余部分填充 for i in range(1,m): for j in range(1,n): dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + matrix[i][j] return dp[-1][-1] ``` 以上代码片段展示了如何通过构建辅助来记录每一步的最佳决策过程,并最终返回全局最优解。 #### 复杂度评估 时间复杂度主要决于遍历整个输入矩阵所需的操作次,即 O(M*N),这里 M 和 N 分别代表矩阵的高度与宽度。空间复杂度同样为 O(M*N),因为我们需要额外的空间存储中间结果以便后续访问[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值