Image Super-Resolution as Sparse Representation of Raw Image Patches

本文探讨了如何运用压缩感知理论和稀疏表示进行超分辨率重建,无需高分辨率图像数据库。通过建立局部模型恢复细节和全局模型消除失真,方法优于传统方法,需要更小的数据库,且在性能上更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为杨建超CVPR08上文章Image Super-Resolution as Sparse Representation of Raw Image Patches的读书笔记,针对如何运动压缩感知的理论、稀疏表示来进行超分辨重建。

Image Super-Resolution as Sparse Representation of Raw Image Patches

To_捭阖_youth

一、Theoretical basis and Motivation

1、Previous methods

①Conventional approaches

require multiple low-resolution images of the same scene,typically aligned with sub-pixel accuracy

The SR task—recover the original high-resolution image by fusing the low-resolution images.

  Problem    —much information is lost in the high-to-low generation process,the reconstruction problem is severely undetermined,

the solution is not unique.

 methods     —MAP、BTV、MRF(【2】new problems:the performance degrades rapidly if the magnification factor is large or if the is not enough low-resolution images to constrain the solution

===>overcome(【12】an example-based learning(require enormous databases)、【22】LEE from manifolds learning(result in blurring effects,due to over-or under-fitting))

②Our method

not require any learning on high-resolution patches,insteadworking directly with the low-resolution training patches or features.

 

 

Two steps:

①a local model from the sparse prior to recover lost high-frequency for local details

(using the sparse prior,find the sparse representation for each local patch)

②the global model from the reconstruction constraint to remove possible artifact

(regularize and refine the entire image and global optimization to eliminate the reconstruction errors,suppressing noise and ensuring consistency with the low-resolution input)

The advantage:

①require a much smaller database

②superior performance,both qualitatively and quantitatively(the couputed sparse representation adaptively selects the most relevant patches in the dictionary to the best represent each patch of the given low-resolution image)

二、Super-resolution from Sparisity

1、Reconstruction constraint

                                    

                        Y=DHX                                       (1)

 

                                          (Y:a low-resolution image;X:a higher-resolution image X of the same scene;

                                                   H represent a burring filter;D the downsampling operator.)

2、Sparse representation prior

the patches x of the high-resolution image X:

 

 

 

 

2.1、Local Model from Sparse Rep

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值