AI+Markdown 生成石川「鱼骨图」Fishbone
什么是「鱼骨图」
鱼骨图,又称因果图或石川图,是由日本管理学家石川馨在 20 世纪 60 年代提出的结构化问题分析工具,因图形形似鱼的骨架而得名,其核心价值在于将 “模糊问题” 转化为 “可视化的因果网络”。它的基础结构包含四个关键部分:右侧的 “鱼头” 是整个分析的核心,必须清晰标注待解决的具体问题 —— 绝非 “用户满意度低” 这类笼统表述,而是 “2024 年 Q3 电商平台用户投诉率同比上升 12%,其中‘物流延迟’类投诉占比 60%” 这类带数据、有场景的精准定义,避免后续分析偏离方向;从鱼头向左延伸的粗直线是 “主骨”,作为因果关系的 “主干通道”,所有原因最终都通过主骨指向核心问题;从主骨上垂直分出的若干 “大骨”,则是原因分类的一级框架,是后续拆解的基础维度。
在具体分析时,鱼骨图的核心在于 “分层拆解、层层深入”,且大骨的维度设计需贴合场景灵活调整,避免生搬硬套。制造业场景中,最常用的是 “4M1E” 维度 ——“人”(如操作员技能、培训情况)、“机”(如设备精度、维护频率)、“料”(如原材料质量、存储条件)、“法”(如生产工艺标准、操作流程)、“环”(如车间温度、清洁度);服务业或互联网运营场景,则多采用 “5P” 维度 ——“人”(如客服态度、员工效率)、“流程”(如售后处理步骤、用户注册路径)、“产品”(如服务功能、商品质量)、“场所”(如线下门店布局、线上页面设计)、“政策”(如退款规则、促销活动机制)。确定大骨后,需从每个大骨延伸出 “中骨”(二级原因),再从中骨拆解 “小骨”(三级及以上具体原因),例如分析 “物流延迟” 时,“人” 的大骨下可拆 “配送员效率低”(中骨),再细化为 “新配送员未熟悉路线”“高峰期人手不足”(小骨),直到原因具体到可验证、可干预。