贝尔曼-福特算法与迪科斯彻算法类似,都以松弛操作为基础,即估计的最短路径值渐渐地被更加准确的值替代,直至得到最优解。在两个算法中,计算时每个边之间的估计距离值都比真实值大,并且被新找到路径的最小长度替代。 然而,迪科斯彻算法以贪心法选取未被处理的具有最小权值得节点,然后对其的出边进行松弛操作;而贝尔曼-福特算法简单地对所有边进行松弛操作,共|V| − 1次,其中 |V |是图的边的数量。在重复地计算中,已计算得到正确的距离的边的数量不断增加,直到所有边都计算得到了正确的路径。这样的策略使得贝尔曼-福特算法比迪科斯彻算法适用于更多种类的输入。
贝尔曼-福特算法的最多运行O(|V|·|E|)次,|V|和|E|分别是节点和边的数量)。
伪代码表示[编辑]
procedure BellmanFord(list vertices, list edges, vertex source) // 该实现读入边和节点的列表,并向两个数组(distance和predecessor)中写入最短路径信息 // 步骤1:初始化图 for each vertex v in vertices: if v is source then distance[v] := 0 else distance[v] := infinity predecessor[v] := null // 步骤2:重复对每一条边进行松弛操作 for i from 1 to size(vertices)-1: for each edge (u, v) with weight w in edges: if distance[u] + w < distance[v]: distance[v] := distance[u] + w predecessor[v] := u // 步骤3:检查负权环 for each edge (u, v) with weight w in edges: if distance[u] + w < distance[v]: error "图包含了负权环"
原理[编辑]
松弛[编辑]
每次松弛操作实际上是对相邻节点的访问,第次松弛操作保证了所有深度为n的路径最短。由于图的最短路径最长不会经过超过
条边,所以可知贝尔曼-福特算法所得为最短路径。
负边权操作[编辑]
与迪科斯彻算法不同的是,迪科斯彻算法的基本操作“拓展”是在深度上寻路,而“松弛”操作则是在广度上寻路,这就确定了贝尔曼-福特算法可以对负边进行操作而不会影响结果。
负权环判定[编辑]
因为负权环可以无限制的降低总花费,所以如果发现第次操作仍可降低花销,就一定存在负权环。
优化[编辑]
循环的提前跳出[编辑]
在实际操作中,贝尔曼-福特算法经常会在未达到V-1次前就出解,V-1其实是最大值。于是可以在循环中设置判定,在某次循环不再进行松弛时,直接退出循环,进行负权环判定。
队列优化[编辑]
求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm。 SPFA算法是西南交通大学段凡丁于1994年发表的。[1]松弛操作必定只会发生在最短路径前导节点松弛成功过的节点上,用一个队列记录松弛过的节点,可以避免了冗余计算。复杂度可以降低到O(kE),k是个比较小的系数(并且在绝大多数的图中,k<=2,然而在一些精心构造的图中可能会上升到很高)
Begin initialize-single-source(G,s); initialize-queue(Q); enqueue(Q,s); while not empty(Q) do begin u:=dequeue(Q); for each v∈adj[u] do begin tmp:=d[v]; relax(u,v); if (tmp<>d[v]) and (not v in Q) then enqueue(Q,v); end; end; End;