Can you solve this equation?

本文介绍了一种使用二分查找法求解特定多项式方程的数值解的方法。该方程为8*x^4+7*x^3+2*x^2+3*x+6=Y,在0到100之间寻找其根。文章提供了完整的C++实现代码,并通过样例输入输出展示了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Can you solve this equation?

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 46   Accepted Submission(s) : 24
Font: Times New Roman | Verdana | Georgia
Font Size:  

Problem Description

Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.

Input

The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);

Output

For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.

Sample Input

2
100
-4

Sample Output

1.6152
No solution!
#include<stdio.h>
#include<math.h>
#include<iostream>
using namespace std;
double f(double x)
{
    return (8*pow(x,4)+7*pow(x,3)+2*pow(x,2)+3*x+6);
}
int main ()
{
    int t;
    double y;
 scanf("%d",&t);
    while (t--)
    {
        scanf("%lf",&y);
        if (f(0)>y||f(100)<y)
        {
            printf("No solution!\n");
            continue;
        }
        double low=0.0,high=100.0,mid=50.00;
        while (fabs(f(mid)-y)>0.00001)
        {
            if (f(mid)>y)
            {
                high=mid;
                mid=(high+low)/2;
            }
         else
            {
                low=mid;
                mid=(high+low)/2;
            }
        }
        printf("%.4lf\n",mid);
    }
    return 0;


}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值