2.ESP32 MicroPython调用C模块-mpy方式

背景

手上的一个温度压力一体式传感器,只有c语言的例子.没有micropython的代码,需要自己实现.

资料

官方文档

概述

c扩展模块可以编译到固件里,也可以编译成micropython(.mpy)的可执行文件.
使用cmake或者Make的编译工具都可以,最好是两者都支持.但是只支持一种也是没问题的.

因此有两种方式可以使用c的扩展:

  1. 编译到固件里的方式
  2. .mpy的方式-定义本地模块

.mpy的方法是在. mpy 文件中使用本机机器代码,这允许编写放置在.mpy 文件中的自定义 C 代码(任意语言都可以),该文件可以动态导入正在运行的 MicroPython 系统,而无需重新编译主固件。

步骤

1.创建目录
micropython为源码主目录,在对应的ports底下创建目录,因为我的是ESP32,所以创建的目录为

micropython/ports/esp32
micropython/ports/esp32/factorial
  • 编译模块

难点:

eps32现在只支持cmake的配置方式了,make.base的方式被移除了
所以写自己的时候需要使用micropython.cmake的配置方式

<think>我们正在处理一个关于在MicroPythonESP32-S3端口上整合TensorFlowLiteMicro的问题。由于这是一个较为复杂的嵌入式系统开发任务,我们需要考虑以下步骤:1.**理解需求**:TensorFlowLiteMicro(TFLM)是TensorFlowLite的嵌入式版本,专为微控制器设计。MicroPython是Python的一个精简实现,用于微控制器。ESP32-S3是乐鑫推出的一款Wi-Fi/蓝牙双模芯片,具有强大的处理能力和丰富的外设。2.**可行性分析**:ESP32-S3有足够的资源(如内存、计算能力)来运行TFLM和MicroPython。但需要注意的是,TFLM是用C++编写的,而MicroPython是用C编写的,因此我们需要通过C/C++的接口进行整合。3.**整合步骤**:-**获取TFLM源码**:从TensorFlow官方GitHub仓库获取TensorFlowLiteMicro的源码。-**将TFLM作为MicroPython的外部库**:将TFLM源码放入MicroPython的源码树中(例如,在`lib`目录下)。-**编写MicroPython的C接口模块**:创建一个新的MicroPython模块(例如`tflm`模块),该模块使用C++编写(注意使用`extern"C"`来避免名称修饰问题),并封装TFLM的主要功能(如模型加载、推理等)。-**修改MicroPython的构建系统**:修改MicroPython的Makefile或CMakeLists.txt,以包含TFLM的源码并链接到新模块中。同时,需要确保C++代码被正确编译和链接(可能需要使用g++)。-**交叉编译**:针对ESP32-S3平台进行交叉编译,生成固件。-**测试**:将固件烧录到ESP32-S3开发板上,并在MicroPython交互环境中测试新模块。4.**注意事项**:-**内存管理**:TFLM需要一块连续的内存(称为tensorarena)作为工作内存。我们需要在MicroPython中分配这块内存(可以使用Python的bytearray或者C中的静态/动态内存分配)。-**模型部署**:TFLM模型通常以C数组的形式存在(通过模型转换得到)。我们需要将其作为只读数据存储在固件中,或者从文件系统加载。-**性能优化**:ESP32-S3支持向量指令和双核处理,可以考虑优化TFLM的运算性能。5.**示例代码**:由于整个过程涉及大量底层代码,这里仅提供一个模块封装的示例:```c//在MicroPython模块定义中#include"py/runtime.h"#include"tensorflow/lite/micro/micro_interpreter.h"//假设我们有一个模型数组externconstunsignedcharmodel_data[];//封装TFLM解释器的结构体typedefstruct{mp_obj_base_tbase;tflite::MicroInterpreter*interpreter;}tflm_interpreter_obj_t;//创建解释器的函数STATICmp_obj_ttflm_interpreter_make_new(){//初始化TFLM解释器//...(具体初始化代码)returnmp_obj_new_tflm_interpreter(interpreter);}//定义模块的函数和类型STATICconstmp_rom_map_elem_ttflm_module_globals_table[]={{MP_ROM_QSTR(MP_QSTR___name__),MP_ROM_QSTR(MP_QSTR_tflm)},{MP_ROM_QSTR(MP_QSTR_Interpreter),MP_ROM_PTR(&tflm_interpreter_type)},};STATICMP_DEFINE_CONST_DICT(tflm_module_globals,tflm_module_globals_table);constmp_obj_module_ttflm_module={.base={&mp_type_module},.globals=(mp_obj_dict_t*)&tflm_module_globals,};//在MicroPython的初始化函数中注册模块MP_REGISTER_MODULE(MP_QSTR_tflm,tflm_module);```6.**模型转换**:用户需要将训练好的TensorFlow模型转换为TFLM支持的格式(如.tflite),然后使用xxd或类似工具转换为C数组。7.**资源限制**:由于ESP32-S3的内存有限(通常几百KB的RAM),模型大小和复杂度需要严格控制。8.**参考资源**:-TensorFlowLiteMicro官方文档:https://www.tensorflow.org/lite/microcontrollers-MicroPython文档:https://docs.micropython.org-ESP-IDF编程指南:https://docs.espressif.com/projects/esp-idf由于整合过程较为复杂,可能需要深入理解MicroPython的内部机制和TFLM的API。以上步骤提供了一个大致的框架,具体实现需要根据实际情况调整。§§相关问题§§1.如何将TensorFlow模型转换为TensorFlowLiteMicro支持的格式?2.ESP32-S3上运行TensorFlowLiteMicro需要多少内存?3.MicroPython中如何分配和管理TensorFlowLiteMicro所需的内存?4.有没有在MicroPython中成功整合TensorFlowLiteMicro的案例或参考项目?</think>### 整合 TensorFlow Lite Micro 与 MicroPython ESP32-S3 端口的步骤 整合 TensorFlow Lite Micro (TFLM) 与 MicroPythonESP32-S3 端口需要将 C++ 编写的 TFLM 嵌入到 MicroPython 的 C 代码框架中。以下是具体步骤: --- #### 1. **环境准备** - **安装 ESP-IDF**: 确保已安装最新版 ESP-IDF(乐鑫官方开发框架): ```bash git clone --recursive https://github.com/espressif/esp-idf.git cd esp-idf && ./install.sh ``` - **获取 MicroPython 源码**: 克隆 ESP32-S3 分支的 MicroPython 仓库: ```bash git clone -b esp32s3-port https://github.com/micropython/micropython.git ``` #### 2. **添加 TensorFlow Lite Micro 源码** - 将 TFLM 作为子模块添加到 MicroPython 的 `lib` 目录: ```bash cd micropython/lib git submodule add https://github.com/tensorflow/tflite-micro.git ``` - **关键修改**: 在 `micropython/ports/esp32s3/boards/manifest.py` 中添加 TFLM 源码路径: ```python include("$(MPY_DIR)/lib/tflite-micro/tensorflow/lite/micro") ``` #### 3. **编写 C 接口模块** 创建 `modtflm.c` 文件(位于 `micropython/ports/esp32s3/modules`),实现 MicroPython 与 TFLM 的交互: ```c #include "py/runtime.h" #include "tensorflow/lite/micro/all_ops_resolver.h" #include "tensorflow/lite/micro/micro_interpreter.h" // 定义 MicroPython 对象封装 TFLM 解释器 typedef struct _mp_tflm_obj_t { mp_obj_base_t base; tflite::MicroInterpreter* interpreter; } mp_tflm_obj_t; // 初始化 TFLM 解释器 STATIC mp_obj_t tflm_interpreter_init(mp_obj_t model_data) { const uint8_t* model_buffer = (uint8_t*)mp_obj_get_buffer(model_data, NULL); static tflite::AllOpsResolver resolver; // 注册所有算子 static tflite::MicroInterpreter interpreter( tflite::GetModel(model_buffer), resolver, tensor_arena, // 预分配内存区域 kTensorArenaSize ); interpreter.AllocateTensors(); // 返回封装对象 mp_tflm_obj_t* obj = m_new_obj(mp_tflm_obj_t); obj->base.type = &mp_tflm_type; obj->interpreter = &interpreter; return MP_OBJ_FROM_PTR(obj); } MP_DEFINE_CONST_FUN_OBJ_1(tflm_interpreter_init_obj, tflm_interpreter_init); ``` #### 4. **配置内存与模型** - **预分配 Tensor Arena**: 在 `modtflm.c` 中定义工作内存(根据模型调整大小): ```c #define kTensorArenaSize 100 * 1024 // 100KB alignas(16) static uint8_t tensor_arena[kTensorArenaSize]; ``` - **嵌入 TFLite 模型**: 使用 `xxd` 将 `.tflite` 模型转换为 C 数组: ```bash xxd -i model.tflite > model_data.h ``` 在代码中引用: ```c #include "model_data.h" ``` #### 5. **编译与烧录** - 修改 `micropython/ports/esp32s3/Makefile` 添加 C++ 支持: ```makefile CFLAGS += -std=c++11 -DTF_LITE_STATIC_MEMORY ``` - 编译并烧录固件: ```bash make BOARD=GENERIC_S3 clean make BOARD=GENERIC_S3 esptool.py write_flash 0x0 build-GENERIC_S3/firmware.bin ``` #### 6. **MicroPython 调用示例** 在 REPL 中使用 TFLM 进行推理: ```python import tflm # 初始化解释器 interpreter = tflm.interpreter_init(model_data) # 获取输入张量 input_tensor = interpreter.get_input_tensor(0) input_tensor[0] = 0.5 # 填充输入数据 # 执行推理 interpreter.invoke() # 获取输出 output_tensor = interpreter.get_output_tensor(0) print("Result:", output_tensor[0]) ``` --- ### 关键注意事项 1. **内存限制**: ESP32-S3 的 SRAM 有限(通常 512KB),需严格控制模型大小和 `tensor_arena` 分配[^1]。 2. **算子支持**: TFLM 默认未包含所有算子,需在 `AllOpsResolver` 中手动添加所需算子[^2]。 3. **实时性**: 复杂模型可能导致推理延迟,建议使用 ESP32-S3 的硬件加速(如向量指令)优化性能[^3]。 > **调试提示**:若出现内存不足,可通过 `idf.py monitor` 查看 ESP-IDF 的堆栈日志。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

物联网开发-阿智

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值