百面机器学习

本文介绍了机器学习中的特征工程,包括Min-Max Scaling和Z-Score Norm两种归一化方法,以及类别型特征的编码方式。接着讲解了词袋模型、词嵌入模型(如Word2Vec的CBOW和Skip-gram)以及LDA主题模型。此外,还涉及自然语言处理的基础,如RNN和LSTM,阐述了它们在文本处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、特征工程

1.1 特征归一化

1.1.1 Min-Max Scaling

  • 把数据进行线性变换,使结果映射到[0,1]之间,相当于对原数据进行等比缩放
    X n o r m = X − X m i n X m a x − X m i n X_{norm} = \frac{X-X_{min}} {X_{max}-X_{min}} X
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值