Problem Description
Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。
Input
输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000)
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
Output
每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。
Sample Input
10 3 4 0.1 4 0.2 5 0.3 0 0
Sample Output
44.0%PS:本题用到的是1背包的思想,只不过是用的逆向思维,题目要求求出至少一份的概率,那就求它的反面,一份也得不到的概率,进而求出至少一份的概率#include <iostream> #include <iomanip> #define M 10009 using namespace std; int main() { int i,j,m,n; double dp[M]; int a[1010]; double b[1010]; while(cin>>n>>m) { if(n==0&&m==0) break; for(i=0; i<M; i++) { dp[i]=1.0; } for(i=0; i<m; i++) { cin>>a[i]>>b[i]; b[i]=1.0-b[i]; } for(i=0; i<m; i++) { for(j=n; j>=a[i]; j--) { dp[j]=min(dp[j],dp[j-a[i]]*b[i]); } } cout<<fixed<<setprecision(1)<<(1-dp[n])*100<<"%"<<endl; } return 0; }